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Ostwald ripening in two dimensions: Correlations and scaling beyond mean field
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We present a systematic quasi-mean-field model of the Ostwald ripening process in two dimensions. Our
approach yields a set of dynamic equations for the temporal evolution of the minority phase droplets’ radii. The
equations contain only pairwise interactions between the droplets; these interactions are evaluated in a mean-
field-type manner. We proceed to solve numerically the dynamic equations for systems of tens of thousands of
interacting droplets. The numerical results are compared with the experimental data obtained by Krichevsky
and Stavan§Phys. Rev. Lett70, 1473(1993; Phys. Rev. 52, 1818(1995] for the relatively large volume
fraction ¢=0.13. We found good agreement with experiment even for various correlation functions.
[S1063-651%98)04402-X]

PACS numbdrs): 64.60.My, 64.60.Cn, 64.7%g

l. INTRODUCTION law (R)~t2. When rescaled by this changing length, all
statistical characteristics of the systésuch as droplet size
When a system is quenched into a two-phase coexistenalistribution and spatial correlationgire time independent.
region, its homogeneous initial state no longer correspond§hat is, by comparing two photographs of the system, taken
to thermodynamic equilibriunil]. If there is a conserved at different(well separatedtimes but properly rescaled, one
quantity whose density is different in the two coexisting cannot tell from any statistical measurement which photo-
phasegsuch as the total volume or total amount of impuri- graph was taken earlier.
ties), the final equilibrium state consists of two macroscopic A parameter of central importance on which various char-
domains, separated by a single phase boundary. The manrigteristics of the systertsuch as the droplet size distribu-
in which a system evolves from its homogeneous initial statdion) depend is the relative volume fraction of the minority
to the final equilibrium state of two-phase coexistence haphasep. This parameter determines the ratio of the size of

been the subject of numerous theoretical and experimentsite droplets and the distance between them. Therefpre,
investigations. controls the extent to which droplets interact with each other;

For small initial supersaturation the system’s evolutionfor very small volume fractions the interaction is weak and
towards two-phase equilibrium starts by nucleation ancny particular droplet “feels” the effect of the others only
growth of droplets(or small crystallites of the minority  through an effective medium. This observation served as the
phase. In the late stage of evolution to the equilibrium statdasis of the theoretical, mean-field modgis-7] (see Ref.
no new droplets are formed and the amount of material il8] for a review. As ¢ increases correlations between neigh-
each of the phases remains fixed. Evolution proceeds bloring droplets become more important, until mean-field-
means of dissolution of small droplets and growth of thebased approximations lose their validity. The effects of cor-
large ones, giving rise to reduction of the totalirface en-  relations have been taken into account analytically to first
ergy of the system. The exchange of material is driven byorder in a small paramet¢®,10]. In three dimensions the
diffusion; the concentration is higher near surfaces with higrsmall parameter is/¢ (see[9]) and in two dimensions it is
curvature and hence the diffusive flux is directed from thel/lne (see[10]). The expressions obtained are so compli-
small droplets towards the larger ones. This coarsening prazated even in first order that it is hard to see how one can
cesy 2], calledOstwald ripeningin the course of which the proceed to higher orders. Rather, a combined analytical and
number of droplets decreases while the average size of theumerical approach seems to be suitable.
remaining ones increases, is the subject of the present paper. The basic phenomenological description of Ostwald rip-

In what follows we describe a formalism that leads to anening is provided in the framework of a Cahn-Hilliard equa-
efficient numerical algorithm for Ostwald ripening in two tion[11] (see Ref[12] for a review for the order parameter.
dimensions. Our work was motivated by and our results ar&ogers and Desdil3] performed such a “first-principles”
compared with recent experimental work on a two-computation, reaching the scaling state with about 500 drop-
dimensional film of liquid and crystalline succinonitrile in lets. This was achieved for small values@fless than 0.1,
coexistence[3]. Therefore, we will refer to the minority when all the droplets were almost circular. Such a number of
phase as “solid” and to the matrix in which the droplets aredroplets suffices for studying the droplet size distribution,
embedded as “liquid.” but is too small to gain insight into the spatial and temporal

Ostwald ripening belongs to a family of nonequilibrium correlations in the scaling state. Moreover, for larger frac-
phenomena that exhibit evolution tosaaling state By a  tions the final stage of the coarsening process was not
scaling state we mean that there is a single length scale in tlechieved in the calculation and scaling was not observed.
system, which grows with time. For Ostwald ripening the Masbaum[14] used this method recently for a simulation,
obvious length scale is the average droplet giB; its  performed on a parallel computer, starting with about 3000
growth with time follows the celebratdd] Lifshitz-Slyozov  droplets. He obtained rather good agreement for various cor-
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relation functions with the experiments of Krichevsky and V2c=0 (4)
Stavang 3].

It is clear, however, that this method can hardly be ap
plied for studying much larger systems, which are needed i
order to make statistically meaningful measurements in th
late-stage scaling regime. Therefore, one turns to simplifie

dhesr]inl]?tgnﬁ o|f_|.t|r|1_e Zysgem, hoping that thde r;]alnr:‘eaturkes oted that in this approximation the total area of the droplets
the full Cahn-Hilliard theory are preserved. For the sake ofg . \served exactly.

completgness, we briefly present below a sequence of ap- 4 js possible to reformulate the stationary diffusion prob-
proximations that lead from the full Cahn-Hilliard theory to |, (1)—(4) as an integral equation that automatically ac-

our approach. counts for the boundary conditions. Expanding the shapes of

First, one goes to a cparse—gramed repre;entatlon of th[ﬂe droplets using a set of orthogonal polynomials, one can
order-parameter field, which retains theundariesbetween Eeduce the problem to amplicit system of ordinary dif-

the crystalline droplets and the surrounding liquid as one o erential equations in terms of the expansion coefficients

the dynamic variables of the problem. The second variable i 5-17

the diffusing cczncentration field(of the impurities or the Further simplification can be achieved by neglecting the
liquid itself) c(r). Simplification of the problem is attained deviation of the droplet shapes from circular. We expect this
by separation of time scales. The process that occurs on fagfpproximation to work for low volume fractions, when the

est scales is the equilibration of the concentration near thgjstances between the droplets are much larger than the drop-
(moving boundaries. Assuming that this occurs instantajets sizes and redistribution of material in a single droplet is
neOUSIy allows us to write the Gibbs-Thomson condition formuch faster than the exchange between the We"_separated
the concentration at a point on the boundary of a dropletgroplets. However, experimeni3] show that even for frac-
where the(local) radius of curvature iR(t): tions as large ag = 0.4 the droplets are more or less circular.
Therefore, we consider Laplace’'s equatiéh) with the
boundary conditiong§l) at perfectly circular domains of radii

R;, positioned at pointﬁi . This is a problem in electrostat-
ics: calculating the potential in the presence of conducting
Herec., is the equilibrium concentration in a liquid above a cylinders. One approximates the solution of this problem by
planar liquid-solid interface. The problem becomes now one
of solving the diffusion equation

‘with the previous boundary conditiofi); however, now we
bok for a solution of Eq(4), from which the rate of change

f the boundaries is obtained using E), giving rise to

ew boundaries at the next time step and so on. It should be

Cldroplet(t):Ceq(R(t)):Coo+ % (1)

o) =3 ain(lf=rl/Ro)+ S P g

9 _ TSI

2
g Vec 2
. - . . whereR, is an arbitrary length. The “chargesy; and the
with boundary conditions given by EL) onmoving bound-  “dipoles” p; should be chosen so that the boundary condi-
aries o ' tions (1) are satisfiedapproximately on the surface of each
Trle Iate of change of the boundaries is determined b}ﬁroplet. Let us denote b¥i1=|ﬁ—Fj| the distance between
J.=n-J, the mass flux normal to the droplet's surface,the centers of dropleisandj and byc| the correct bound-
which in turn is proportional to the gradient of the c:onc:en-ary value of the concentration. as givén by EY). We now
tration field at the boundary: approximate the concentration field at the the boundaries by
its expansion to first order in the small parame®efX;; :

dR . -
i J=-Vc|g. (3)
Cot = =c(F+R)~qInR, /R +LR‘+§‘, q;In(Xi; /Ro)
Equations(1)—(3) constitute a closed dynamical problem. R R 2 B e A
The next simplification is a quasistatic approximation to the . - -
problem. Forfixed boundary conditions the diffusing field P; - Xij Xii-Ri
would reach a steady state in a characteristic diffusion time +2 2 E i 2" ©®)
FX 2 X

tp~R?, whereR is a typical length scaléistance between

neighboring droplefs If this time is much shorter than the . ) .

growth timetg, i.e., the time it takes a typical droplets Ri denotes the radius vector of points on the surface oidrop—
radius to change appreciably, the concentration field reachdet i; the last term appears as the expansioryd|r;+R

a steady state before the radii of the droplets had a chance teFj|_ Equation(6) contains two parts: one that depends on

change and one can use the stationary diffusion equatiofye girection ofR; and one that does not. This results in two

instead of Eq(2). This is precisely the case for late stages 0fgats of linear equations for the charges and the dipoles:
the growth process, wheitgs~R3, so that indeedp<tg.

The Lifshitz-Slyozov scaling lawig~R? can be established * 3
. ; ; a X
by dimensional .anaLyS|s of Egsl) and (3). Henc?, at late et —=qunRi/R0+2 g In(X; /Ro)+2 Pj - Ajj ,
stages the solutioa(r,t) of Eq. (2) can be approximated by Ri j#i j#i |xi,j|2
the solution of the stationary diffusion problem (7



-

Xi,j'ﬁi

. :0.
j
X 512

8

B
pl 2|+
R i

, q
Zi

As we will see, the last term in Eq7) is O((R/X)?), i.e.,
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Clearly, solving the system of equatiofis3) and (14) is a
much simpler computational task than solving the Laplace
problem (4) with moving boundary conditions on the sur-
faces of the droplets. Note, however, that the matrix ele-
mentsL; ; grow with the distance between the droplets. Be-

smaller than the other terms, and can be omitted. Thus thgyyse of this, finite-size effects become crucial: All droplets

system of equations

o
C.t o =CGilNR /Ro+ 2 gjIn(X;; /Ro) 9
i J#i

determines the charges. Since E&). should be satisfied for
any Iii , the dipoles are determined by

>

Xl,J

L.
R

> q (10)

E b C

The physical meaning of Eq10) is that the dipole associ-
ated with droplet is simply related to the electric field in-

duced at its center by all the other charges. Once the charg

are obtained from solving Eq9), their substitution in Eq.
(10) determines the dipoles.

The normal component of the flux at the boundary o
dropleti is given by

di 5i : Iii

Vnc<ﬂ+f<i>=§i—2—R?—, (11)

where Eqs(6) and(10) were used. The normal flux has two

in the bulk feel the boundary. The simplest way to avoid this
problem is to consider the system with periodic boundary
conditions; the interaction of a pair of droplets contains an
infinite sum of logarithms, corresponding to all ineagesof
these droplets. Yaet al.[18] have summed this series using
Ewald summation techniques.

The problem is further complicated by the need to invert
the NX N matrix L; ; at eachtime step in order to get from
Eq. (13) explicit expressions foR; . Thus, solving the sys-
tem of equationg13) and(14) takesN® operations per time
step; therefore, each run costé operations. This necessi-
tates huge CPU timdghe simulations of Yaet al.[18] took
about 1000 CPU h on an IBM 3090 computer for a system of
ggout 3000 droplejs

Beenakker19] has solved an analogous problem in 3D
by truncating the matrix; ; [defined in 3D in a way analo-
fgous to Eq(14)]. He took into account only the interactions
between droplets whose separation does not exceed a thresh-
old, reducing in this way the number of droplets with which
a given one interacts to about 20. The physical motivation
for such truncation isscreening[20,21]; droplets whose
separation exceeds the screening length do not affect each
other. It should be noted that with such a truncation the total
volume of the droplets is not conserved and Beenakker had

contributions: an isotropic part, giving rise to a rate ofto adjustR; in Eq. (14) at each time step in order to restore

change of the radius, given by

dR g

TR 12

and an anisotropic part, due to the dipole term in 8d).
The contribution of the dipole part to thetal flux vanishes;

volume conservation.

Akaiwa and Meiron[17] used the analogous truncation
procedure in 2D. Although the interactions between the
charges are expected to be well screened even in 2D, formal
truncation of the matrix seems problematic in this case.
Since the matrix elements grow with distance between the
droplets, the elements of theversematrix as functions of

it induces deposition of material on one side of the droplethe cutoff should contain large fast oscillating components
and evaporation from the opposite side. We approximate theinlike in 3D, where their dependence on the cutoff is

effect of the dipole flux byshifting the position®f the cir-
cular droplets(see below. We also show(in Appendix A)
that in the low concentrationg<1) limit the effect of the
dipoles is negligible; we discuss this limit first, working with
charges only, and then include the dipoles.

smooth. Nevertheless, their results particular, the corre-
lation functiong compare well with experiment. Apparently,
this success is due to the fact that these oscillations are ef-
fectively averaged out during the run.

Our goal was to find an analytic way of approximating

Equation(12) implies that the rate of change of the areal "' in a manner that reflects screening as the physical basis

of dropleti is proportional to its chargg;. Usingq; from
Eq. (12) in Eq. (9) eliminates the concentration fiek{r)

of the approximation scheme. Onktehas been inverted, we
can integrate the equation

from the problem and, after proper rescaling of variables, the

following set of equations for the temporal evolution of the

radii results:

(1+Ri/R)=2 LR, (13)
]

where R.=a/c., is a capillary length and the matrik; ;
defined in two dimension&D) as[15]

IN(R/Ry)  if i=]

L; i =RR; X .
P IN(X j/Rg)  otherwise.

(14

R=2> L "(1+R;/R;) (15
J

numerically. The approximation introduced in this work can
be summarized by the expression

1 KO(Xi,jlgsc)/i_i
o(Ri/¢sd i) Ko(RilLs) \Rj Ri)’
(16)

R. = -l
R; ;L,‘J RK

whereKj is the zeroth-order modified Bessel function of the
second kind(also called the MacDonald functinSince
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TABLE I. Various quantities related to the self-consistent deter-cally, due to the shift of the boundary during the interdal
mination of ¢(r) (with the depletion zones taken into accouir  The anisotropic component of the local velocity of the drop-
different area fractiorp. Ry and{, are(simultaneoussolutions of  |et's boundary is given by
Egs.(B19), (B21) (with d=2.15R) in both), and(B25); ¢, is the

value of the screening length as obtained in Sedniéglecting the 2pcod
effect of the depletion zongs/,., is determined by EqB26) with v=—J,=— R
¢(r) obtained by numerical integration. All lengths are given in
units of (R). i - -
whered is the polar angle betwedR andp. The mass added
¢ Ro &' Lo Locr atR is
0.001 51.35 45.99 45.96 45.922 sm=p(v dt)(R dd)=—(2p/R)p dt coss d#,
0.01 15.59 11.77 12.13 11.71
0.05 8.10 4.08 4.73 4.00 so that(see also Appendix A df9])
0.13 6.14 1.88 2.73 1.94
dr 2p [ - 2p 2p
i % Rcosd do=— % cogh do=— R—'Z
Ko(X) ~exp(~X) for largex, the parametef,. has the mean- K &
ing of a screening length. In the mean-field linite., for Finall
very small area fractiow) it is determined by the equation Y
dr,  2p, a X
1 I 1 ] 1)
-2_ = g=2> (20
{sc 27-rn< Ko(R/§sc)>' 17 dt R 717 Xl X ]

However, for larger fractions, where the effects of correla-Note that both sides of E¢20) have the same dimensional-
tions become important,. is determined by a more com- ity since the charges; are measured in area per tieee
plicated condition, as discussed in Appendix B. In practice Ed: (12)]. _

in our simulations forp=0.13 we used ;.= 2.7R, as de- The procedure for s’OIV|ng Eqsl3) and(;4) for the dy-
termined by Table [see Appendix B for details namics of the droplets’ radir;, together with Eq(20) for

In spite of various approximations that were made to detheir positionsr;, is as follows. For giverr; and R; we
rive Eqgs.(16) and(17), we believe that they contain the most invert L, obtaindR;/dt [or g; as given by Eq(12)], and
important aspects of the dynamics present in @8). One integrate one time step. Next, substitutigginto Eq. (20),
can see explicitly the effects of screening, with the screeningye obtain new values af, and the procedure is repeated.
length appearing naturally in the derivation presented below. The sum on the right-hand side of EQO) appears to be
The total area is conserved explicitly. In the limit of very problematic: Assuming that the droplets’ charges are uncor-
small minority phase area fractions, whéR)/{s—0, our  related(while the total charge is zeyoone can see that the
description is consistent with Marqusee’s mean-field theory‘nean square of this sum diverges |Ogarithmica”y with the
[7], which leads to the following dynamical equation for the sjze of the system. However, as we show in Appendix A, the

droplet’s radius: correlations between the charges, provided by screening, en-
sure the convergence of this sum, so that it can be evaluated
Rd_R: k(R/g)(l— i) (18) using a reasonable fraction of its terms. Actuallyheristic
d R R/’ formula, simpler than Eq(20), can be used to evaluate the

droplets’ shifts in practical simulations. As explained in Ap-
wherek(x) =xK1(x)/Kq(x), while { is defined by the equa- pendix A, Eq.(20) can be replaced by
tion ¢~ 2=2mn(k(R/{)). SincexK,(x)—1 for x—0, we
find k(x)—1/Kq(x) and our definition of the screening dFi Kiif1 1 )Zi‘j
length coincides with his. We used the formalism presented at 2 ij( >|X- _|2,
i

R R

2 (21
above to integrate the evolution of large assemblies of drop- 1=

lets and found that at relatively large values of the area frac\_/vhereKi,j=K0(Xi,j 12,0 andki=Ko(R, /Z.0). Although the

tion ¢ the droplets' motion, induced by the so far negleCteq%lpproximation leading to this formula is not clearly estab-

dipoles, becomes important and must be taken into accourhshed our simulations show that it works as well as the
We evaluate now the contribution of the dipoles to the - . ; L
more rigorous equatiofi20). At the same time it is much

shift of the droplets’ centers of mags; , defined by more economic because only droplets that lie within the
screening lengtlifrom the droplet whose shift is evaluajed
MﬁF:f R sm. (19 contribute to the sum.
In the sequence of approaches to the Ostwald ripening
. problem in two dimensions, ranging from the Cahn-Hilliard

Here the integration is over the boundary of a drofdRets a  equation to Marqusee’s mean-field theory, our model, which
radius vector on its boundary] = pR? is the total mass of includes only the pairwise interaction between the droplets,
the droplet p is the density; it will drop out of the final can be viewed as thminimal extensiorof the mean-field
resuld, and Sm is the additional mass adsorbéat lost lo- approach. This concerns our E@1) [in comparison with
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Eq. (20)] as well. We believe that our approach constitutes

the simplest step that can be taken beyond simple mean field. > L 'Rj=a"'-0 (27)
Our program is as follows. In the next section we present )

a few universal properties of the matiix This is followed

by Sec. lll, where we derive the main resiHg. (16)] using

a mean-field-type approximation to~!. Numerical solu-

tions of the resulting dynamics, based on ELp) and Eq.

(20) or (21), are presented in Sec. IV and compared with .

experiments by Stavans and Krichevsky. Section V presents Ri=2> Lt (28)

a short summary of our approach and results. !

and hence statemef®2) holds in the limit of large system
size. An immediate consequence of Eg7) is obtained by
using it in Eq.(15), yielding

Thus we see that the leng®y drops out from the description
Il. SUM RULES of the dynamics of the system.
Multiplying by R;, summing oveii, and using again Eq.
)5(27), we establish area conservation

2 RR=> (EI L;lei):o (29)

2 LiR=2> L 'R—0, (22) ]
| ]

We present now some important properties of the matri
L~! that lead to useful “sum rules.” The first claim is that

. o as a consequence of our sum rule. Another important conse-
the sum approaching zero as the system size increases. Thigence is the following observatioh;;*, the elements of
relationship is analogous to one presented for the threghe inverse matrix, arsdependent of the parameteg, RTo

dimensional case by Beenakker and Rf22|. We present gee this, take the derivative df { *L); , with respect to IRy;
here argumentévhich seem to us simpler than those of Ref. cjearly, (L~1)’L+L~1L'=0 and hence

[22]) for the validity of Eq.(22) in 2D. First consider the
uantit

e (Lim'==2 Lif L (30
8 Z Lis /R, Z Riln(X;;/Ro). @3 However, from Eq.(14) we immediately get thatl(j )’

=—R;Ry, which when used in Eq30) gives

The sum is clearly dominated by regions that are far chpm

in the absence of long-range correlations the composition of “1vr_ _ —1y/ -1n

such regions does not depend on the identity of drgplén (Lim) 2," Ek (Liem) Rl 7Ry 3D

the other hand, the contribution of those droplethat lie

near droplef will, in general, depend oR; . By “near” we  and when Eq(27) is used here we get

mean the region for which correlatioase important. The

size of this region is, however, smdlhn the order of the (Lim)'=0 (32

screening area; see belpwhe values ofX;; in this region . o

are small, and the contribution from it is negligible comparedand hence;; = does not depend oRy; in view of Eq. (28)

to those from the far-away parts of the plane. That is, fothe system’s dynamics is therefore also independeRyof

increasing system sizg — o, whereas the contribution from

the correlation region remains finite. Hence we can write ll. MEAN-FIELD APPROXIMATION TO L1
Let us decompose the matixof Eq. (14) to its diagonal
aj=2i Lij/Rj=a—wc°. (24 and off-diagonal parts
Next, consider the sum L=Lo—La, (33

where Q:o)i,j: 5i,jRi2|n(Ri IRy and (l:l)i,j:
1= k=2 X L= Li'R2 Ljk/R, —RiR;In(X;;/Ry). Note that only the off-diagonal part con-
K ko ! K tains interactions between different droplets. One could con-

1 sider an expansion df~Lin powers of the interaction
=> L 'Rja;. (25)
i

Lt=(1-Lo'l) et=2 (Lo'Lp"let, (39)
Using now Eq.(24), we get 0 -t 0 Tt TV o

with L * given b
a L 'Ri=1, (26) o
]

“_ 1
('—ol)i,j=5

. 35
so that "R7IN(R; /Ry) 39
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Clearly, for matrix elements that correspond to well-To obtain manageable mean-field equations the following
separated dropleté.e., whenX;;>R,), terms of ordem simplifying assumptions are madg) In sums such as Egs.
+1 will be larger than those of order. that is, the series (40) and (41) replace 1/InR;/Ry) by its average valug23],
diverges formally and in order to obtain meaningful results(ii) approximate these sums by integrals, &iid set in Eq.
one should perform some kind of partial summation to all(41) y,= v for all k (i.e., impose the independencel)f We

orders. To do this we introduce tfle matrix, defined by will discuss and justify these steps below, but before doing
A A o that, we investigate the resulting approximation to Et),
L =L + 0T, (36)  given by

To ensure thakL; ij‘klz Si ks T has to satisfy the equation 1, )
T ’ - Eﬁo IN(X ; /Ro) ¢(X; 1) 7T+ (X )

T=Ly+L0Lo T (37
! 1o = ylnXi'k/Ro, (45)
For the sake of convenience we introduce a new matix
defined by where
Ti,j:RiRjd)i,j' (38)

1 1
502=27Tn<—>~27m— (46)
Once the matrixp; ; has been found, it is straightforward to IN(Ro/R) In(Ro/{R))

. kel . . e 71
write down T and, using Eq(36), the inverse matrid.~". and the angular brackets denote averaging over the distribu-

Rewriting Eq.(37) in terms of ¢, we get tion of droplet sizeqthat is, the average value obtained in
1 the particular droplet configuration in whidh~! is evalu-
> —=—=—In(X; ;| /Ry) }; -+ b ated.
i 7 In(Rj/Ro) RS " The integral equatioit45) can be solved easily by oper-
= —(1=8,)IN(X; /Ry). (39) ating with Viz on the left- and right-hand sides. Using the
' identity VzlanZwB(F), we obtain the following differential
For the diagonal elements this takes the form equation forg(x):
1 _ N
b=~ 2 ==Xy /Ro) b (40) — Lo 2P+ V2= —2mya(r). (47)
' j#k InR]- /RO ’ ’

. . I lution is the MacDonald functi
whereas for the off-diagonal elements we obtain from Eq.ts solution is the MacDonald function

(39

@i k= d(Xi W= vKo(Xik/ o), 17K (48
1
j;ik ij—/Roln(Xi,j/Ro)%,kﬂL ®i k=~ vInX; /Ry, —In(r/2Lg)—C, r<¢y
41
0 Koti)~{ [y (49
——e T r>{,,
where 5 € o
=1+ % (420  whereC~0.5772 is Euler’s constant.
N(Re/Ro) Let us briefly discuss this result. First of all, note that

self-consistency of the approximation imposes positivity of
§§, i.e.,, Rg>(R). This is indeed the case, as will be dis-
cussed below. Next note that the divergences(if) at short
distances is an artifact of the approximations we made by
central premise of this mean-field approach is that the off_replaqmg the e;](_ac(;_mscrete eﬂuatlﬁm) r:)y _thel continuous
diagonal matrix elementg; ; depend only on the distance egua“"”(“?)- This divergence as'no P ysma. consequences
X i, e, since the diagonal elements of thiscretematrix ¢ are not
given by takingr — 0 in the solution of Eq(47); rather, they
bii= qﬁ(lﬁ—rjl). (43 ~ are determined by Ed40). One should note also that i,

’ were to depend ork the result(48) would have become
That is, we are interested only in thmirwise interaction  $i.k= %Ko(Xik/{o), implying thate;  # ¢y i, whereas the
between the droplet$ieglecting any possible dependence ofmatricesT and ¢ must be symmetrifsee Eqs(36) and(38)
¢i ; on other droplets The analogous approximation for the and remember thdt is symmetrid.
diagonal elements is that they are all equal, ¢y is inde- The diagonal elements are expressed in terms of the off-
pendent ofk, diagonal ones in Eq(40); using there the approximations

. listed above and the mean-field expressié8) for the off-
P = k= Pbo- (44 diagonal elements, Eq40) becomes

It should be noted that Eq&10)—(42) are exact. In principle,
for any configuration of droplets, the set of equatid89)

are to be solved for the matrix elements,. We approxi-
mate the solution of this problem inraean-fieldspirit. The

(N
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Pk~ 540 ZJ IN(Xy.; /Ro)Ko(Xj k/£0)d?Tj= ¢by,
(50)
as anticipated in Eq44). Using this in Eq.(42) yields

®o
T In(R/Ry)

and in order to get a consistent mean-field approach, wijth
independent ok [as required by assumptidiii )], we must
have ¢,=0. To set¢o=0 we will now use our freedom to
adjust the parametd®,. As discussed in Sec. Il, we are free
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_ 1
S R R S g o)
(56)

When we approximate the sum by an integral, in the spirit of
our mean-field approach, it becomes

>

j#i

1 1
- . 72 2r— _
in(R, 7Rg) <o Xii/ 0=~ 546 f Ko(r/¢o)d?r =1
and the right-hand side of E§56) vanishes, so that in the
mean-field limit(i.e., for vanishing area fraction; see Appen-
dix D) when our approximations become exact, the sum rule

to vary this parameter since it does not affect the dynamicg indeed satisfied. If, however, we use E8g) for practical

[24]. Thus we arrive at the following condition dRy:

1
bo=5, 00" f IN(Xycj/Ro)Ko(Xj /) d2r;=0. (51)

After some simple but lengthy transformations, given in Ap-

pendix C, Eq.(51) becomes the following approximate ex-

pression for iRy
)~

< Ko(R/ o)

Substituting Eq(52) into Eq. (46) yields a closed equation
for o, with no dependence oR:

2= 1 ~2 1 53
b =2m\ ey 2 ™M KoRize) ) P

Note that once we findy, we can use this equation also to
determineR,. This will not be necessary sind®, drops out
of the dynamic equations, as shown below. Equat&s) is

1
IN(Ry/R)

(52

almost identical to Marqusee’s expression for the screening . . Lo N .
&\/Ith this approximation foL ™" the sum rule is of course

d exactly satisfied in every step and area is conserved. In the

length. In principle we can now proceed as planned; for an
droplet configuration evaluaté,, calculate the mean-fiel

approximation to the matrixp,
¢i,i~Ko(Xi i/ o),

substitute into Eqg.38) and(36) to getlifl, and use it in the
dynamics equation(28). There is a problem doing this
though. An important property of thexact Tt is that it
satisfies the sum rul€27) and hence the total area of all
droplets is conserved by the dynamjsge Eq.(29)]. Since

D k~0, (54

calculations at a nonvanishing area fraction, the sum rule
(and hence area conservatiowill not be satisfied rigor-
ously.

This problem can be overcome rather simply in the fol-
lowing way. Adopt the mean-field approximati¢Bb) for the

off-diagonal elements of.~! and use the sum rul?) to
determine its diagonal elements:

The result for both diagonal and off-diagonal elements of
1

L™+ can be summarized as
-1 Ko(Xi j/¢0) .
~ RAN(Ri/Ry) jZ) IN(R;/Ry)
o Ka(X:
o(Xi,;/%o) otherwise.

Ri Rl |n( R, /Ro)ln( RJ /Ro)
(57)

mean-field limit the sum in Eq57) yields —1 and the ex-

pression forLLi obviously reduces to the naive one, given
by Eqg. (55).

Using Eq.(57) in Eq.(28), we obtain now a rather elegant
expression foR; , the rates of change of the droplets’ radii:

1 1 o(Xi,jléo)( 1 1)
'_2 Lij= RiIN(Ri/Ry) & IN(Rj/Ry) |R; R/’
(58)

Eq. (54) is an approximation, we have to check the extent to

which the sum rules are satisfied by our approximat&ub-
stituting Eq.(54) into Eqg. (36) yields

1
Y R A
RfIN(R; /Ry)

B Ko(Xi j/40)
" RiIn(Ri /Ry)R{IN(R; /Ry)
(55

-1 -1

i

Note thatL; ]1 are small at distances; ;> {,; hence the pa-
rameter{g should be interpreted as streening lengthAt
short distances the solution of E(7) behaves like the
lowest-order approximatiofi.e., stopping ah=1 in the ex-
pansion(34)]. Using these expressions in the sum r(#&)
gives

For a given droplet configuration we have now an explicit
expression for the dynamics of the droplets’ radiote that
the values of the parameteRy and {, are also determined
by the configuration As a final “cosmetic” adjustment, we
use Eq(52) to replace logarithms bl{, (thereby eliminating
R, from the dynamicg yielding the equation we used in our
numerical study:

1 O(XI 1/50)/
RiKo(Ri/£0)i Fi) Ko(Rj/{o) \
To complete the treatment we now justify our naive ap-

proach, discuss the regime in which our approximation is
expected to hold, and check whether various assumptions

Ri:

"R/ (59
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that were made are self-consistent. First of all we assumed Kep( 1 1
that R, can be chosen so th4f>0. Now we can see from va,BZW(R—— R_) (62)
Eq. (52) that the “optimal” Ry~ {,, and since in the mean- aTBVTE e
field limit {,>R; this means thaR,>R; for all i, so that by i )
Eq. (46) ¢2 is indeed positive and our approach is self- Where we used the abbreviated notation
consistent.
The central point of our approach was replacement of the K, ;=Ky(X, 3/s0),  K.=Ko(R,/Is0), S, =R?%/2.
sum(41) by an integral:

The screening length that appears in the argument of the

1

;kmln(xi,imo)d’i,k MacDonald functions is{;;=2.73R, as follows from the
o 1770 analysis of the depletion zones presented in the Appendix B

1 ) (see Table | atp=0.13).

MR IR, f In(X;,j /Ro) $(X; 1)d°r . (60) Say we wish to integrate Eq&1) and (62) naively. For

) each time step we have to evaluate M(lt) velocitiesV,,,
It is intuitively clear that such a substitution is valid as longWith each velocity given by a sum dfl terms, i.e.,Nop
asN,, the number of droplets in the screening zone, is large™ N operations per time step. If we have initialydroplets
Now, after having obtained the solutiaf, we can indeed @and wish to reach the late stages with a few percent surviv-
show that the conditioll,>1 holds when Ing~)>2m (see  ing, we would have to perforfiieps~N time steps of inte-
Appendix D. Therefore, the conditions for validity of the gration, as was done by Ya al.[18]. This is so because if

mean-field result lead to a self-consistent theory only in théhe time step is greater than the lifetime of some droplet, its
limit of very low area fractionp—0; even foro~0.001, area will becomenegativeat the end of the time step, which

there are 0n|y a few dr0p|ets in the Screening zone. leads to an increase of the area fraction of the surviving

For the experimental valug=0.13,/, is about the mean droplets. Therefore, apparently in order to guarantee exact
droplet radius, which makes our approximation completelyaréa conservation one must eliminate each shrinking droplet
invalid. Such a small value af, appears because above we Separately, restricting the time step by the next vanishing. At
have neglectedll correlations between the positions of the the same time, the detailed evolution of the smallest droplet
droplets. In particular it turns out that each of the droplets igS absolutely unimportant for us. Rather we would like to
surrounded by adepletion zongfrom which all possible chooser to be not smaller than it is needed to ensure that the
neighbors are excludetht least the distance between the relative change ofR), the meanradius of the droplets, is
centers of any two droplets must exceed the sum of theipmall during one time step. For this reason, Akaiwa and
radii). In practice(as seen from our numerical solutions; seeMeiron[17] simply removed the droplets wiR< e(R) with
below) the mean diameter of the depletion zorkss ap- €= 0.1beforeperforming the time step. Lét be the fraction
proximately 2.2R). The corrections provided by including ©f the droplets that are eliminated in each time stejs kept
the effects of the depletion zones are discussed in Appendigonstant, to a good approximation, by fixiry. Then the
B. As is shown there, taking the depletion zones into accouniumber of steps needed for a run is reducedNiQeps
does not change the previously obtained expression for Eqs (1/fs)InN. However, their procedure still did not guarantee
(16), but the mean field, is replaced by a larger screening Precise area fraction conservation: When the number of
length (sc=2.73R) for ¢=0.13), which becomes compa- droplets was reduced by a factor of (fom 100 000 to
rable to the nearest neighbors’ distance. Although this im20 000, the change of was about 2%18].
provement is not sufficient to justify our mean-field ap- e require our algorithm to conserve area fractomctly
proach, the numerical resul®btained with the effect of and nevertheless to reduce boM,s and Nop. We
depletion zones taken into accoumresented in the next achievedN,,~N andNg.,¢ (1/f5)InN; that is, our scheme
section are in a rather good agreement with the experimentéquiresO(NInN) operations for the entire evolution.

that were performed ap=0.13. To reduce thé\ dependence dfl,, we note that a droplet
B, whose separation fronw exceeds considerably the

IV. THE ALGORITHM AND RESULTS screening length, will have only a small contribution\g .

OF THE SIMULATIONS As will be shown below, only droplets from thest layer

neara have a significant contribution and therefore only the

In this section we describe our numerical procedure angeighbors ofx are included in the su,=S4v, 4. There-
the results of our simulations. Since we would like to reachfore, we haveN,,~N (replacingN?). ’
the scaling state with a sufficiently large number of droplets To reduce Ngteps 10 Ngrepe= (1/fs)INN, conserving the
(to reduce the effect of fluctuationswe must start from grea fraction we should treat accurately the vanishing of the
initial states with many droplets and allowing this large sys-small droplets, instead of simply removing them before per-
tem to evolve for long times. In order to do this with reason-forming the time step, as is done in Ré18]. Putting this
able computational resources one has to resort to approximato practice requires care however. Let us consider the sys-
tions that accelerate the numerical procedure. Rewrite Edem of droplets at two consecutive timgsandt,=tq+ 7.

(59) in the form We call all droplets that survive t large and denote them
by indicesi andj, whereas droplets that vanished before
dS, -V EE v (61) are called small and are marked by indigcesn. With this
dt o g Tap notation Eqs(61) and(62) become
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ds where the chargeg=R; Ri are evaluated at each time step,
EZE Ui,ﬁ% Vim> 63 or the heuristic formula

ds;, dri &(i_i> X 20
W:; Um,n”‘; Um,j- (64) dt g. kiki R Ry/|x, 2" (70

We chooser to be small enough so that the density of smalldiscussed in the Introduction and Appendix A. Then we pro-
droplets is small; hence the typical distance between tw&eed according the following steps. .

small droplets exceeds considerably the screening length. () Pick Rs such that the number of droplets witR,
Therefore, to an excellent approximation two small droplets=Rs is approximatelyNs=f:N. (In practiceRs/(R) is kept

do not interact(i.e. K, ,~0) and the first term in Eq64) ~ fixed; in the scaling state this is the same as fixing)

can be neglected. Thus E@4) becomes Identify these as small droplets and calculate\g] using
Eq. (64).
ds, (i) An estimater{® for the time step is determined as the
W:; Um,j=Vm- (65 interval during which all small droplets vanish,
(0) —
Then a small droplet will live for time T _mn?){tm}’

tm==Sn/Vin- (66) wheret,, is determined by Eq(66).

(iii) Calculate the velocities of the large droplet
=2v;,; (summing over neighbors afonly; hence this step
takes~ N operationg Note that some droplétthat has been
classified as large may in fact disappear during the interval
7(9): this happens if the velocity is such that< —V, (%,

All such droplets, if any, are collected and reclassified as
small, a new value forr is determined, and the velocities
T+ 2 Vi mtm, (bothV, andV,) are recalculated. Usually one such iteration
m suffices to reach a self-consistent classification.

(iv) Integrate Eq(68) one stepr, that is, calculate new
areas according to E@67).

1 Vim (v) Calculate the shifts of the droplets according to either
> Ui,j+_2 va—> 7. (670  Eq.(69) or (70) and repeat the procedure.

! Tm m Since the relaxation time needed to reach the scaling state
depends on how close the initial configuration is to this state,
one would like to choose the initial configuration reasonably
close to it. We prepared our initial state as follows. We gen-
ds 1 Ui erated a set dil=50 000 droplet_s with a distribution of radii
FTE E v+ —Z va— (68) close to the expected oridetermined from short preparatory

! T m m rung. We scattered them over the plane at random but so

Thi tion h imole int tation: Ttrel that each droplet is surrounded by a small depletion zone
is equation has a very simple interpretation: argé  (free of other droplets to mimic the effect of correlations

droplet obtains from each of the small droplets a part of theEhat appear in the real evolving system. For this initial con-

latter’s area, proportional to the _strength .Of the ?meracnoq‘iguration we started a rather large time stefand run the
between the droplets. Equati®di?) is the main working for- dynamics without moving dropletsyielding only an ap-

sproximation to the true dynamics. This preliminary relax-

ation went on until the number of droplets was reduced to
. =t N=28 000. At this point a smaller time step was selected,
the small droplets onto the large ones. Using &) elimi- the droplets were allowed to move, and we started to take

nﬁtes the fatlﬁt ts::ﬁle of the ciynamlcsc;j thebtlme Sﬁmg b(; measurements. All the results presented below are averaged
chosen so that the assumptions made above are indeed safjge, eight runs in order to reduce statistical fluctuations.

fied_. Our scheme is put to practice _by f_irst choosing a con- In our first simulations we did not take into account the
venientfraction of small dropletswhich is then kept(ap- shift of droplets. As is shown in Appendix A, this frozen

E)Vroximatelyhfiﬁed througho(tht the rur(typ_ically v(\j/e ulsedfs droplets approximation might be good even for fractions as
~0.003, which corresponds to removing80 droplets at ;.46 45,=0.13. In order to test this, we executed runs with

each time step when the system contains 28 000 droplets frozen droplets and measured the fractibn of droplets
Finally, we should take Into account the shift .Of the drolo'crossing each other, as a function of the number of droplets

lets. For that one can use either the exact relation in the system. These data are presented in Fig. 1. It shows a

- - considerable growth off. with time (from zero atN

ari _ > 9 Xij (69  —28000 to 10% aN=1000) and there is no tendency to-

dt 3 (Xl X407 wards stabilization. This proves that the droplets’ motion has

Turning now to integrate Eq63), we note that the term
vi m, Which represents the contribution of the fast droptet
to the growth of the slow droplét is actually present only
during the intervak,, and not the entire~. Hence we must
use

S(t+7)=§(t)+

which can be rewritten, using E(66), as

Si(t+7)=5(t)+

This is, in fact, the discrete-time form of the differential
equation

correspond tdi) redistribution of the material between the
large droplets andii) absorption of the material that leaves
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FIG. 1. Time dependence 6f, the fraction of crossing drop-
lets, as obtained from the frozen droplets moihpty squares FIG. 2. Correlation functions of droplets’ positiora(r) as
from modelB, which uses the heuristic E70) for the droplets’  measyred at different moments of time in the scaling state, corre-
shift (full squares, and from modelA, which uses the exact EQ. gponding toN=3000, 2000, 1500, 1300, and 1000 droplets present
(69) for the droplets_ shifflarge pircles and small circles for small (small circles. The weighted average of these rutie weight of a
and large summation block sizés=4.1, and b=5.8, respec-  configuration is proportional to the corresponding number of drop-
tively; see explanations in the tgxThe lines are guides for the eye. |gg) js also showrflarge circles. These results were obtained using
The growth off. observed for the frozen droplets model indicates yo4e|B. Note that all the lines are close to each other, indicating
that it is not valid for the area fractiop=0.13. On the other hand, h4¢ the system has indeed arrived at the scaling state. The experi-

once the droplets are allowed to movg,decreases to very small yenial results of Krichevsky and Stavans, shown for comparison
values irrespective of whether mod&lor A is used. (square are also close to ours

a considerable effect on the dynamics of the system ang;kee dn (Ve"#ggizjsotﬁ;3“55;&2‘;?;18“; d:‘;ztz:ﬁ V;(:Ilaatl)\geJt_
hence the model of frozen droplets is invalid for such Iarge50 000 droplets in the scaling statand the small peak is
¢ definitely observed.

Analysis of the distribution of the droplets’ radii at three
consequent moments of time, where the system contained
3000, 2000, and 1000 droplets, respectively, also shows that
the distribution achieved its stationary form. No clear differ-
ence between the modefs and B was seen. The droplets’
radii distribution in the scaling state, averaged over time, as
obtained from our simulationgnodelB), is shown in Fig. 4
together with the experimental results. A certain discrepancy
is seen, however, that does not exceed by much the statistical
errors of the experimental points.

Finally, we measured the charge correlation functi@is
which contain more detailed information about the system,

Taking the droplets’ shift into account improves this situ-
ation drastically. We used both Eg&9) and (70) (called
modelsA and B, respectively; see belgwor the droplets’
motion. Figure 1 shows that both modéisandB give rise
to much smaller values of, and that it saturates at long
times. Interestingly, while there is no essential difference be
tween these two models, the heuristic modilexhibits
slightly lower values off . than modelA. In order to test the
convergence of the sum in E(9) we executed runs with
different numbers of terms in the sum taken into account
namely, we varied the size of the summation box from
=4.1.. to b=5.8/4. and found no noticeable difference in
the behavior off. Thus we conclude that we have achleveddeﬁned as follows. For a chargg calculateQ , (r), the total
proper convergence of EG9). . . amount of similar charge ag; within an annulus[r,r

We now present results of our simulations, performed at - . .
the same relative area fractign=0.13 that was studied ex- +dr] aroundr;, and define the function
perimentally[3]. We measured the position correlation func-
tion G(r), that is, the mean number of the droplets whose
centers lie within an annulys,r +dr] around the center of

a given one. Figure 2 preserngr) obtained running model
B at three consequent moments of time, when the system
contained 3000, 2000, and 1000 droplets, respectiiedgh
of the curves is averaged oveight rung. We see that the
three curves coincide up to their fluctuations, which proves
that the scaling state has indeed been reached. The corre-
sponding experimental data are also presented in this figure;
good agreement is seen. Figure 3 compares the position cor-
relatlo_n funCt'ons obFalned by the modeélsandB (averag_ed_ FIG. 3. Weighted time averadéhe weight of a configuration is
over time in the scaling stateThis proves that our heuristic ,onortional to its number of droplétsf the correlation functions
formula works perfectly. The experiment@i(r) has a no-  of droplets’ positions(r) (averaged over eight rupor modelsA
ticeable maximum at~4.7, while for our curves the maxi- andB in the scaling statélarge circles and small circles, respec-
mum is smaller; at the same time our curve is rather close t@vely). The experimental results of Krichevsky and Stavans are also
the result of Masbaurtsee Fig. 1a) in Ref.[14]), which has  shown (squares This shows that the two models give indistin-

a small peak as well, which cannot be distinguished clearlyuishable results that are in good agreement with experiment as
from the fluctuations. Note that in Refl4] the data were well.

4 . 6 3 10
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where the droplets of the minority phase exchange material
by means of diffusion. This process leads towards a scaling
state in which the characteristic length scale grows with time
according to the scaling laR~tY3 while all the statistical
properties(such as the droplets’ size distribution, position
correlation functions, etf.once rescaled, remains fixed.

The problem of calculating these characteristics has been
studied in a number of detailed numerical simulations that
take into account all the complicated interactions between
the droplets, mediated by the diffusion field. These calcula-
tions, although being exact, do not contribute much to a

, ) o qualitative understanding of the importance of different com-
ingFIsctséti \;(til)’:tggogm(ggsesrtesccii;g Sllflidzlggé)blzit;,ct)grxéz(?ats: a ponents of the interaction between the droplets. On the other
. = ; hand, analytical mean-field treatments neglect all spatial ef-
circles andN=1000(small circles. Each plot presents the average fects and seem to be oversimplified
over eight runs. The line indicates the overall average. The experi- . . ’ s
mental results of Krichevsky and Stavans are also shédva- The aim Of,,th's paper was to construct and te.st a minr-
monds. mal extension of the mean-f!eld approach_that W|II_ take into
account spatial effects, keeping only the simplest interaction
—{a: between the droplets. We calculated analytically an approxi-
9+(r)=(giQ+(r)). . ; . .
mate form of these interactions using a mean-field approach.
Similarly we defineg_(r) in terms of theoppositecharges. Only pairwise interactions between the droplets were pre-
These two functions, as obtained by simulation of the twoserved. We proposed a very efficient numerical algorithm,
models, are presented in Fig. 5 together with the correspondvhich allows us to follow the evolution of tens of thousands
ing experimental data by Krichevsky and Stavans. Theof droplets. We tested our approach by comparing its results
agreement can be characterized as excellent. Again, thereugth the experimental data and found surprisingly good
no noticeable difference between the results of modedsd  agreement at a relatively large value of the minority phase
B. area fractionp=0.13, where our approach to the interaction
One should notice that our definition of the charge correbetween the droplets was not expected to work.
lation functionsg-.(r) is not precisely the same as that of  Trying to find the simplest model that reproduces the ex-
Ref.[3]. Krichevsky and Stavans smeared a droplet's charggerimental data, we examined the importance of a number of
on its perimeter before calculating.(r), whereas we as- effects. Our findings are summarized as follows.
signed a droplet’s charge to its center. We believe, however, (i) Depletion zones have a considerable effect on the
that the smearing of the charge on the droplet's perimeter iscreening length, increasing it frofn= 1.88R to 522,73?
no more than a way of smoothing the data and there is n@at the same time, as shown in Table |, the presence of the

essential difference between the two definitions. depletion zones almost does not affect the functional form of
the pairwise interaction between the droplets.
V. SUMMARY (i) Our approach is based on the assumption of circular

S . droplets and the monopole plus dipole approximation for the

Ostwald ripening is the coarsening process, observed du{j-.ﬁc ion field. Th t obtained with th ) i

ing the late stage of the evolution of a two-phase system nusion field. The agreement otained wi € experimen
Ihdicates that at the values @f studied higher multipoles

" ‘ ‘ | ‘ can be neglected.

i ] (i) Even though inclusion of the depletion zones in-

creases the screening lengthtoo little to provide formal

validity to our approximation, our simulations show that it

works even forg=0.13.

(iv) The effect of the droplets’ mation is very important
for large area fractions, although formally it could be re-
garded as adiabatically small compared to the droplets
growth.

(v) The expression that determines the shift of the drop-
lets requires summation over a large number of droplets. We
propose a much simpler heuristic formyntaining a sum
over the nearest neighbors onthat gives even better results

FIG. 5. Charge correlation functior(see precise definition in
the tex} for the samd g, (r)] and the oppositgg_(r)] charges, as
obtained using modeld and B, compared with the experimental than the exact one. L . .
data of Krichevsky and Stavarfill circles and full squares for the AN advantage of our method is its computational effi-
same and the opposite charges, respectivalye lines are guides CI€NCy; we are able to choose time steps no smaller than
for the eye. Our data present averages over eight runs. Note that th@quired by physical reasonability, eliminating a large num-
fluctuations in this plot are larger than for the position correlationPer of droplets at each step. At the same time, the total area
function (see Fig. 2 We believe that the difference between the Of the droplets is conserved exactly at each time step. This
results of the two models is due to the fluctuations. Interestinglymakes our approach useful for extensive studies of the Ost-
model B seems to be closer to the experimental points. wald problem.
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APPENDIX A: ANALYSIS OF THE FORMULA 1dX _ i Kii (m)ﬂl
FOR THE DROPLETS' SHIFT 2.dt G X2 G mG Xl
A6
The droplets’ shifts are determined by E80): (A6)
R R where
ﬁzz 4 X (A1) (=K. A .
dt 713 Xl (X Qi =Kj,idj,i

denotes the part of the charge on flle droplet that is in-
duced by thgth one. The first term of EqA6) determines
the shift of the droplet due to the direct material transferred
between this droplet and itgh neighbors. This sum con-
verges very well becaus@i(” decreases exponentially with

First of all, using this formula we can show that in the low
area fraction limit the shift of the positions can be neglected
Indeed,7sy,, the characteristic time of a shift of a droplet’s
center of mass, is given by

1]d% | q distanceX; ;. The second term accounts for the effect of the
e d—'J ~. (A2)  redistribution of the material between thh andmth drop-
Xij| dt Xi,| lets. Since the internal surfon m) contains a short-range

factor K; ,, it is actually over aZx{ box around thejth
droplet. In this double sum, each term

A (A3) Qm Xi,j
i J |Xi,j|2

Comparing Eqs(A2) and (A3) we see that

can be paired with

R-2 [0 Vi
-1 -1 -1 LX
Tsh ™ Tgr NG ~Tor o (A4) QEme) |,m2_
i |xi,m|

That is, for small area fractions the motion of the droplets’sinceQEm): —QU | these two contributions can be consid-

centers is adiabatically slower than’ thel_r growth. Conse-ered as alipole. Thus eachix £ box represents a dipollé

guently, one can neglect the droplets’ motion and the SySteg}andomly directepwith the dipole momenP~q¢, whereq

is characterized only by the dynamics of the droplets’ radii a L 0 ' .

determined by Eqg13) and (14). Formally, one can expect Is the chgracterlsn(_: scale @}’ . Thus the second term in

this approximation to be valid even fgr=0.13 (used in the Eq. (A6) is now estimated as

experiments by Stavans and Krichevskyd we have tried it

in our work (see Sec. IV and Fig.)1Our simulations have (second term~

shown, however, that neglecting the droplets’ motion gives

wrong results and therefore the dynamics of fheas been -

taken into account. S P (A7)
Secondly, note that a rough estimate of the sum on the IX; J_|2'

right-hand side of Eq(A1) indicates that it exhibits bad con- '

vergence properties. Assuming to be uncorrelated random The mean of this expression is zero, while the mean square

variables with zero mean we get deviation is given by

P 2(P-XipX,

¢xBoxes|X; ;| X 514

dr;? 1 !
<(H> >~<q2>2 ™ _|2~<q2>lan, (A5) ~0* P X (A8)
i i

whereL is the size of the system. A more accurate treatmentvhich converges to a finite value. Thus, when calculating the
implies, however, that the sum does converge. According teum in Eq.(Al), we can restrict ourselves to only several
Egs.(12)—(16) nearest layers of neighbors.
Finally, one can use an even simpler heuristic formula for
4R calculating the shift of the droplets. The meaning of &)
=R W_m%j) KjmAjm. is that the motion ofth droplet has two sources. The first is
the material transferred between this droplet andjtts
where neighborgthe first term of Eq(A6)]. The second is due to
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redistribution of the material between the surroundjtiy  thej droplets around the fixed droplatandk can no longer
droplets themselveghe second terjn Although these con- be ignored. One should emphasize that other effects, such as
tributions are of the same order, in our case we have a reasaorrelations between different charges and between the drop-
to drop the second teritalthough it does not simplify com- lets’ sizes, may also be of importance and can also possibly
putations, it does makes the model physically simpl€he  affect the elements of the inverse matrix we are calculating.
shift of the droplets has a noticeable effect only at relativelyNevertheless, here we take into account only the correlations
large fractions, where the interaction between the next neathat ensure that the areas of two neighbors do not overlap. In
est neighbors is considerably suppressed. Then, for a fixemur actual numerical calculations even this is done only ap-
configuration of the nearest neighbors of ille droplet we  proximately, by introducing aniform sized depletion zone,
can vary the configuration of its next nearest neighbors. Thiseglecting its fluctuations as well as dependence on the drop-
manipulation will not affect the first term of EA6), while  lets’ radii.

it will reduce its second term. Thus, in the mean-field spirit Correlation between the positions of the droplets can be
of our model, we can average the shift velocity of ille  incorporated in our approximate treatment by replacing the
droplets over various configurations of its next nearest neighsum in Eq.(B1) by the integral operator

bors. Thus we finally get

2 1 > > - 2
Sintd=—5_4o fln(xi,j/RO)P(riyrjurk)¢(xj,k)d ri,
(B3)

dX Kiaf1 1) X (49)

R TILN

Although the approximation leading to this formula is notwhereP is the probability of finding a droplet centered at the
based on a rigorous expansion, our smulayons show that Boint r= ;]_ , given that there are droplets at Fi and
works as well as the more rigorous equati@il). At the -

same time it is much more economic because it requires t
summation only over the nearest neighbors.

ha Mk We approximate this probabilitithree-point correla-
e : R .
tion function by representing it as the product of pair-
correlation functions

APPENDIX B: DEPLETION ZONES

_ o _ P(ri,ri,rd=90X )a(X ), (B4)
The simplest possible improvement over the mean-field
approximation can be obtained by including some of the coryhere g(X; ;) is the probability of finding a droplej at
relations between the positions of the droplets’ centers. 'Qiistancexi} from the center of droplet; this function is
this appendix we will take into account the simplest mani-normalized such thay(r)— 1 atr—c. Within this approxi-
festation of these correlations: the so caltipletion zones  mation Eq.(B1) is replaced by
These are the regions around each of the droplets, from
which all possible neighbors are excludésy geometrical
steric constraints, the distance between the centers of any &, ¢+ (X ) =—
two droplets must exceed at least the sum of their radii
The exactequation for the diagonal elements of the ma-
trix ¢ is given by Eq.(41), whereas for the off-diagonal
elements it is Eq(39):

Drk

I R RY)

) InXi ,k/RO (BS)

where now we have

R 1
1 Sintp=— Z(c;zf In(X; j/R0)G(Xi (X k) (X ) d?r; .
j;i’kaj—“-\,om(Xi,j/Ro)(ﬁj,k“L ®i k= — vlnX;  /Ro. (B6)
(B1) . -
In order to solve Eq(B5) we first try to bring it as close to
This has been replaced in our mean-field approximation byhe form of Eq.(B2) as we can and then use the same method
the following integral equation for the smooth functigiix) of solution as was used there. To this end we first rewrite the

[see Eq(49)]: expression foS,,; as

Lo - P (X . 1
2067 MO 1RO, 0, + 00X, Sud=— 5=t | 0K IROIGOX, ) 40X T,

=—ylnXi’k/R0. (BZ)

1
+ — -2 - .
Clearly, by using the integral of E¢B2), we implicitly as- 27750 f INCXij /RIG(Xi )
sume that the distribution o?l , the positions of the centers w[1— ) CNH2r
of dropletsj, are independent of their distance from the one [179(X;01¢(X;0d7; B7)
atr;. This homogeneity assumption may serve as a reasofhe pair-correlation functiorg(X) vanishes for short dis-

able approximation as long a§ the mean distance between tancesx<d andg~1 for largeX. Therefore, we get nonva-
neighbors, is much greater thaln the typical radius of the nishing contributions to the second term in E&7) only
depletion zones. However, when the density increases to thghen X; x<d. For X; ,>d, we have in this regiom(X; ;)

extent thatX~d, the inhomogeneity of the distribution of ~1 and In&; ; /Ro)~IN(X k/Ry), so that
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S 1 — L5 2p(Xi )+ V2h(X;
S 5t | 100X, IRoIBK,) 60X 00 L5 26 (X0,) + V2(X, 1)

1
1 +E§62V?J’ F(Xi ) d(X; 0)d?rj==2my8(Xi ¥
_Zgazln(xi,k/Ro)f [1-9(X; 01X 0 dr;.

(B13)
(B8)
The last formal step we take is to express the first integraPenote the Fourier transform &%(X) by
here as the sum of two terms, usingg=[1—g]—1, which
leads to our final expression &, ¢:
L F(q)——f dzrln(R—)[l g(r)]ed"
Swd=— 5=ta” [ 0K, RO #0X O,
= drln( ) g(r)]do(gr). (B14)

1
# o te” [ 0K IRTT= 00X 16X, 0T,

Note that the integral converges, sirgie)— 0 fast for large

1
-2
5. %0 '”(Xi,k/Ro)f [1—9(X; ) ]1b(Xj 0 d?r; . r. Upon Fourier transforming EqB13) becomes
(B9)

Our basic equatiolB5) takes now the form - ~ e~
auatores — {0 2(@)— a7 b(a) — {o *a’F(a) p(a) = —2my,

(B15)

1
- oo [ 0K RGO P+ 60X, . .
7" yielding the solution forg(q) (from now on we sety=1)

1
+ %gazf F(Xij) #(X;)d?rj= = ydn(X; «/Ry),

(B10) 1
$(q)= (B16)
where q l+§0 [F q)+q 2]
b Once ¢(q) has been evaluated, the functigf(X) is ob-
n=1+ N(Re/RY 50 f [1-9(X; ) 1e(X; W d?r tained by the inverse Fourier transform. From this point on
(B11) we work with the specifi¢step-function form of g(X):
and
0, X<d
X)= Bl
F(X)=In(X/Ro)[1—g(X)]. (B12) 90=]1 x>d. (B17)

Note that Eq.(B10) is very close in form to Eq(B2); the

only significant difference is the appearance of a new termf-or this form ofg the integral in Eq(B14) can be calculated

the integral over the functioR, which contains explicitly the analytically, integrating by parts and using the identities

correlation functiong. Clearly, wheng(X)=1 we recover [XJ1(X)]'=xJo(x) and[Jo(x)] =J;1(X) to get

Eq. (B2). As was the case there, the solution of Eg10) is

symmetric if and only ify, does not depend ok, y.~ vy,

which is achieved by imposing, (=0. This leads again to

a condition that determines the value of the paramBer

[see Eq(B21) below]. Although nowy+# 1 [see Eq(B11)],

its value is unimportant for the simulations since it can be

absorbed in the definition of the time scale in the dynamic

equation. Hence, below we will set=1 We now substitute this intéB16) and perform the angular
We solve Eq.(B10) by first applying theV? operator to integration in the inverse Fourier transform to arrive at the

the equation, which yields following expression forb(r):

F(9)=q 2{—qdy(qd)In(Ry/d)+[1—JIo(qd)]}.
(B18)
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(1) = f i Jolan) q da. (19
0 P+ Ly 2~ [£4 2N(Ro/d)1q dJn(qd) + £ 21— Jo(q)]

We cannot perform this integral analytically, but it is simple , 2¢ 1
to evaluate by numerical integration. Once this has been Lo = RZIN(Ry(R)) - (B2Y5)
done, the parametd®, can be found by imposing the con- 0
dition ¢ =0, which takes the forrfanalogous to Eq51)]  Using Eqs(B23) and(B25) simplifies our numerical scheme
significantly. To demonstrate the effect of including the
1 ., r 9 depletion zones in the calculation we present in Table | the
k=50 f In Ry 9(r)¢(r)dr=0, (B20)  reqyits of calculations performed in the scaling regime at
four different values ofp. The various quantities presented
which becomes the following equation fBg: were obtained as followsR, and ¢, are (simultaneousso-
lutions of Egs.(B19), (B21) (with d=2.15R) in both), and
wln(r)¢>(r)r dr (B25). g?f is the value of the screening length as obtained by
d settingd=0. The screening lengtfy., is the first moment of

INR,= (B21)  the functiong(r),

f G(r)r dr -
d {2o= fd #(r)r dr, (B26)
OnceR, has been determined, we can evaluate the parameter
Lo, Using its definition calculated by numerical integration of E@19).
As we see, for very small fractions the screening length is
~2_, 1 822 less thargg‘f. This is surprising since we expected inclusion
fo"=2mn IN(Ry/Ry)/* (B22) of the depletion zones to increase the screening regions. For
the larger fractions, however, we indeed see that the effect of
For a given droplet configuration one can now proceed tdncluding the depletion zone changes sign: The renormalized
find ¢(r) by taking the following steps. First, determine the screening length becomes greater than the mean-field result,
radius of the depletion zorgfrom the measured correlation as was expected.
function of the dropletgsuch as Fig. B Then solve Egs. Another important observation we should make is that as
(B19), (B21), and (B22). This can be done iteratively by ¢ increases; decreases and becomes comparable to the av-
initializing the procedure using the results of the correlation-erage radiugin units of which it is given in Table)l At such
free theory forg, (o, andR,. The next iterate ofp(r) is ¢, ¢ obviously cannot be interpreted as a “screening length”
evaluated using EqB19). This newe(r) is then used in Eq. because{~(R) means that there are no droplets in the
(B21) to yield the new value oR,. This in turn is used in  “screening zone.”
Eq. (B22), together with the distribution of the droplets’ ra-  Another question that we studied in detail concerns the
dii, to yield the new iterate ofy. The procedure is then extent to which introducing the depletion zone affects the
repeated until convergence is reached. In practice we usedfanction ¢(r). Clearly, when we are not in the limit of very
few simplifying steps, which made computation faster with-small ¢ it is no longer given by the MacDonald function.
out significantly altering the result. The first simplification Table Il containsp(r), as obtained ap=0.13 by the proce-
consists of setting dure outlined above: setting=2.15R) and simultaneously
solving Egs.(B19), (B21), and(B25). Comparingé(r) with
d=x(R) (B23  ihe simple mean-field resulKq(r/¢J") reveals that the
_renormalization due to inclusion of the depletion zones leads
doa significant change of the matrix elemegtg). On the
other hand, comparing(r) with the functionKy(r/¢g) we
see thaip(r) does not differ much from MacDonald’s func-
tion, provided therenormalized{, is used. Therefore, in
principle this function can be used in calculations as a fairly
good approximation foré(r). The numerical results pre-
72 1 sented in Sec. IV were obtained usifyg=2.73, according to
o —ZWHW (B24)  Table I.

for an entire run, instead of determining it from the correla
tion function at each time step. We found that values in th
range 2.6 x< 2.8 fit the correlation function quite well. The
numerical results were obtained using the fixed vakie
=2.15. A second time-saving simplification is to use the
approximation

APPENDIX C: DERIVATION OF THE CONDITION

to calculate {,, instead of evaluating the average
FOR R,

(1/In(Ry/R))) over the measured distribution of droplet sizes.
Recall also that the density of dropletsis related to their The condition(45) on Ry:
relative area fractionp by n=¢/m(R?). In the spirit of the

revious approximation we repla¢®?)~(R)?2, so that Eq. 1
5524) beco?r?es Plage’)~(R) a E(oz In(Xy j/Ro)Ko(Xj k/{o)d?r;=0, (C1)
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TABLE II. Interaction function¢g(r) for the case of depletion
zones calculated at the area fractigr 0.13. It is compared with

the MacDonald function with the renormalized screening parameter
£ (third column and with the unrenormalized, mean-field screen-

ing lengthZJ'" (fourth column. Note that the distanaeis measured

in units of the mean distance between neighboring droptets

=1//n.

r/x #(r) Ko(r/Zo) Ko(r/&mi)
0.722 2.884 2.617 1.205
0.884 1.914 1.773 0.711
1.045 1.320 1.218 0.425
1.206 0.901 0.845 0.257
1.420 0.546 0.525 0.133
1.689 0.297 0.294 0.059
1.904 0.185 0.186 0.031
2.012 0.147 0.148 0.022
2.118 0.118 0.118 0.016
2.333 0.075 0.076 0.008
2.548 0.046 0.048 0.004
2.763 0.027 0.031 0.002
2.97 0.016 0.020 0.001
3.031 0.014 0.018 0.001
3.353 0.0087 0.0095 0.00047

can be simplified by representing
|n(Xi'j /Ro) = |n(Xi’j /§O) + In(golRo)

so that Eq(C1) becomes

where the constak has the value
—i -2 ) 2, _
A=5—00” | Ko(Xjx/{o)d?rj=1 (3

because of the normalization &f(x), while the other con-
stantB is given by

1
B= zgng IN(Xi s o) Ko(X, /Lo Ty, (CA)

In order to evaluat® we note that the solution of E¢45) is
given, for any value oRg, by Eq. (48). Therefore, we can
substituteg(X; ) from Eqg. (48) in Eq. (45 and choose for
Ry the special valu&ky={, to get the identity

1 N
_EQZI|n(|r_r'|/§o)K0(r'/§o)d2r'+Ko(r/§o)

=—1In(r/¢p). (CH

It is trivial to see that in the limir —0 the integral on the
left-hand side of this identity becomes precisely equaBto
[as given by Eq(C4)]. For r—0 we can use the smail-
limit (49) of K, so that for very smalt our identity becomes

BORIS LEVITAN AND EYTAN DOMANY

so that we find

B=In2—-C (Ce)
(C is Euler’s constant Using the values oA andB in Eq.
(C2) it becomes

IN2—C+1In(£y/Ry) =0, (C7)

providing a new connection betwe&j and{,. This is to be
used together with Eq46) to solve for bothR, and .
Since Eq.(46) contains InRy/(R)), it is convenient to add
and subtract KR) from Eq.(C7) and to rewrite it as
IN(Re/{R))=1In(2¢y/(R))—C. (C8
If we have (RYy<(, the right-hand side of Eq(C8) is
~Ko({R)/{y), so that Eg. (C7) becomes IMg/(R))
~Ko((R)/{p). Finally, we can write, with the same accuracy,

1 _ 1
in(Ro/R) |~ \ Ko(RIZo) | €9

APPENDIX D: THE SMALL PARAMETER
OF THE APPROXIMATION

In the mean-field limit, wherRy~ {,>R; the quantity
1/In(Ry/R)) does not vary much and one can take it out of the
sum and replace it by its mean value. Next we see that there
is a scalel, such that¢ does not change much over dis-
tances much less thaf. Let us divide the plane into boxes
b of size {4X {o. Then the sum that still remains can be
rewritten as

>

jeb (j#i,k)

(D)

_zk |n(xi,j/RO)¢j,k:§b:

1#1,

Actually, only the few boxes located negy have a signifi-
cant contribution to the sum; the contribution of all the oth-
ers is exponentially small due to the screening effect.

The expression being summed does not change much in-
side each box and therefore, if the mean number of the drop-
lets in the boxN, is large enough, the internal sum within
each box can be replaced by the integral. In this case, ac-
cording to the theorem of large numbers,

1
In(X; i /Ro) ¢ —nfln Xi j IRo) p(X; 1) d?rj| ~ —.
jgb ( i,j 0)¢J,k ( ij 0)¢( J,k) j \/N—g
(D2)
This gives rise to the following condition for the validity of

our approximation:

N,=n¢5>1. (D3)
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However, Eq(46) implies thatnZ~ (27) ~!In(Ry/(R)) and,  the definition of the area fractiop=7n(R?)~ mn(R)?
as we have showri,y~R,, so that yields In¢y/Ry)~In(¢ ). This, together with EqgD3) and
(D4), means that

nZG~In(Zo/(R)). (D4)
On the other hand, multiplying E¢46) by (R)? and using In(¢~ Y)y>27.
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