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Ostwald ripening in two dimensions: Correlations and scaling beyond mean field

Boris Levitan and Eytan Domany
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel

~Received 4 August 1997!

We present a systematic quasi-mean-field model of the Ostwald ripening process in two dimensions. Our
approach yields a set of dynamic equations for the temporal evolution of the minority phase droplets’ radii. The
equations contain only pairwise interactions between the droplets; these interactions are evaluated in a mean-
field-type manner. We proceed to solve numerically the dynamic equations for systems of tens of thousands of
interacting droplets. The numerical results are compared with the experimental data obtained by Krichevsky
and Stavans@Phys. Rev. Lett.70, 1473~1993!; Phys. Rev. E52, 1818~1995!# for the relatively large volume
fraction w50.13. We found good agreement with experiment even for various correlation functions.
@S1063-651X~98!04402-X#

PACS number~s!: 64.60.My, 64.60.Cn, 64.75.1g
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I. INTRODUCTION

When a system is quenched into a two-phase coexiste
region, its homogeneous initial state no longer correspo
to thermodynamic equilibrium@1#. If there is a conserved
quantity whose density is different in the two coexisti
phases~such as the total volume or total amount of impu
ties!, the final equilibrium state consists of two macrosco
domains, separated by a single phase boundary. The ma
in which a system evolves from its homogeneous initial st
to the final equilibrium state of two-phase coexistence
been the subject of numerous theoretical and experime
investigations.

For small initial supersaturation the system’s evoluti
towards two-phase equilibrium starts by nucleation a
growth of droplets~or small crystallites! of the minority
phase. In the late stage of evolution to the equilibrium st
no new droplets are formed and the amount of materia
each of the phases remains fixed. Evolution proceeds
means of dissolution of small droplets and growth of t
large ones, giving rise to reduction of the total~surface! en-
ergy of the system. The exchange of material is driven
diffusion; the concentration is higher near surfaces with h
curvature and hence the diffusive flux is directed from
small droplets towards the larger ones. This coarsening
cess@2#, calledOstwald ripening, in the course of which the
number of droplets decreases while the average size o
remaining ones increases, is the subject of the present p

In what follows we describe a formalism that leads to
efficient numerical algorithm for Ostwald ripening in tw
dimensions. Our work was motivated by and our results
compared with recent experimental work on a tw
dimensional film of liquid and crystalline succinonitrile i
coexistence@3#. Therefore, we will refer to the minority
phase as ‘‘solid’’ and to the matrix in which the droplets a
embedded as ‘‘liquid.’’

Ostwald ripening belongs to a family of nonequilibriu
phenomena that exhibit evolution to ascaling state. By a
scaling state we mean that there is a single length scale in
system, which grows with time. For Ostwald ripening t
obvious length scale is the average droplet size^R&; its
growth with time follows the celebrated@4# Lifshitz-Slyozov
571063-651X/98/57~2!/1895~17!/$15.00
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law ^R&;t1/3. When rescaled by this changing length,
statistical characteristics of the system~such as droplet size
distribution and spatial correlations! are time independent
That is, by comparing two photographs of the system, ta
at different~well separated! times but properly rescaled, on
cannot tell from any statistical measurement which pho
graph was taken earlier.

A parameter of central importance on which various ch
acteristics of the system~such as the droplet size distribu
tion! depend is the relative volume fraction of the minori
phasew. This parameter determines the ratio of the size
the droplets and the distance between them. Thereforew
controls the extent to which droplets interact with each oth
for very small volume fractions the interaction is weak a
any particular droplet ‘‘feels’’ the effect of the others on
through an effective medium. This observation served as
basis of the theoretical, mean-field models@5–7# ~see Ref.
@8# for a review!. As w increases correlations between neig
boring droplets become more important, until mean-fie
based approximations lose their validity. The effects of c
relations have been taken into account analytically to fi
order in a small parameter@9,10#. In three dimensions the
small parameter isAw ~see@9#! and in two dimensions it is
1/lnw ~see @10#!. The expressions obtained are so comp
cated even in first order that it is hard to see how one
proceed to higher orders. Rather, a combined analytical
numerical approach seems to be suitable.

The basic phenomenological description of Ostwald r
ening is provided in the framework of a Cahn-Hilliard equ
tion @11# ~see Ref.@12# for a review! for the order parameter
Rogers and Desai@13# performed such a ‘‘first-principles’’
computation, reaching the scaling state with about 500 dr
lets. This was achieved for small values ofw ~less than 0.1!,
when all the droplets were almost circular. Such a numbe
droplets suffices for studying the droplet size distributio
but is too small to gain insight into the spatial and tempo
correlations in the scaling state. Moreover, for larger fra
tions the final stage of the coarsening process was
achieved in the calculation and scaling was not observ
Masbaum@14# used this method recently for a simulatio
performed on a parallel computer, starting with about 30
droplets. He obtained rather good agreement for various
1895 © 1998 The American Physical Society
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1896 57BORIS LEVITAN AND EYTAN DOMANY
relation functions with the experiments of Krichevsky a
Stavans@3#.

It is clear, however, that this method can hardly be
plied for studying much larger systems, which are neede
order to make statistically meaningful measurements in
late-stage scaling regime. Therefore, one turns to simpli
descriptions of the system, hoping that the main feature
the full Cahn-Hilliard theory are preserved. For the sake
completeness, we briefly present below a sequence of
proximations that lead from the full Cahn-Hilliard theory
our approach.

First, one goes to a coarse-grained representation of
order-parameter field, which retains theboundariesbetween
the crystalline droplets and the surrounding liquid as one
the dynamic variables of the problem. The second variabl
the diffusing concentration field~of the impurities or the
liquid itself! c(rW). Simplification of the problem is attaine
by separation of time scales. The process that occurs on
est scales is the equilibration of the concentration near
~moving! boundaries. Assuming that this occurs instan
neously allows us to write the Gibbs-Thomson condition
the concentration at a point on the boundary of a drop
where the~local! radius of curvature isR(t):

cudroplet~ t !5ceq„R~ t !…5c`1
a

R~ t !
. ~1!

Herec` is the equilibrium concentration in a liquid above
planar liquid-solid interface. The problem becomes now o
of solving the diffusion equation

]c

]t
5¹2c ~2!

with boundary conditions given by Eq.~1! on moving bound-
aries.

The rate of change of the boundaries is determined
J'5n̂•JW , the mass flux normal to the droplet’s surfac
which in turn is proportional to the gradient of the conce
tration field at the boundary:

dR

dt
52J' , JW52¹W cuR . ~3!

Equations~1!–~3! constitute a closed dynamical problem
The next simplification is a quasistatic approximation to
problem. Forfixed boundary conditions the diffusing fiel
would reach a steady state in a characteristic diffusion t
tD;R2, whereR is a typical length scale~distance between
neighboring droplets!. If this time is much shorter than th
growth time tG , i.e., the time it takes a typical droplet’
radius to change appreciably, the concentration field reac
a steady state before the radii of the droplets had a chan
change and one can use the stationary diffusion equa
instead of Eq.~2!. This is precisely the case for late stages
the growth process, wheretG;R3, so that indeedtD!tG .
The Lifshitz-Slyozov scaling lawtG;R3 can be established
by dimensional analysis of Eqs.~1! and ~3!. Hence, at late
stages the solutionc(rW,t) of Eq. ~2! can be approximated b
the solution of the stationary diffusion problem
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¹2c50 ~4!

with the previous boundary conditions~1!; however, now we
look for a solution of Eq.~4!, from which the rate of change
of the boundaries is obtained using Eq.~3!, giving rise to
new boundaries at the next time step and so on. It should
noted that in this approximation the total area of the drop
is conserved exactly.

It is possible to reformulate the stationary diffusion pro
lem ~1!–~4! as an integral equation that automatically a
counts for the boundary conditions. Expanding the shape
the droplets using a set of orthogonal polynomials, one
reduce the problem to animplicit system of ordinary dif-
ferential equations in terms of the expansion coefficie
@15–17#.

Further simplification can be achieved by neglecting
deviation of the droplet shapes from circular. We expect t
approximation to work for low volume fractionsw, when the
distances between the droplets are much larger than the d
lets sizes and redistribution of material in a single drople
much faster than the exchange between the well-separ
droplets. However, experiments@3# show that even for frac-
tions as large asw50.4 the droplets are more or less circula
Therefore, we consider Laplace’s equation~4! with the
boundary conditions~1! at perfectly circular domains of radi
Ri , positioned at pointsrW i . This is a problem in electrostat
ics: calculating the potential in the presence of conduct
cylinders. One approximates the solution of this problem

c~r !5(
i

qi ln~ urW2rW i u/R0!1(
i

pW i•~rW2rW i !

urW2rW i u2
, ~5!

whereR0 is an arbitrary length. The ‘‘charges’’qi and the
‘‘dipoles’’ pi should be chosen so that the boundary con
tions ~1! are satisfied~approximately! on the surface of each
droplet. Let us denote byXi j 5ur i

W2rW j u the distance between
the centers of dropletsi and j and bycuRi

the correct bound-
ary value of the concentration, as given by Eq.~1!. We now
approximate the concentration field at the the boundaries
its expansion to first order in the small parameterRi /Xi j :

c`1
a

Ri
5c~rW i1RW i !'qi lnRi /R01

pW i•RW i

Ri
2 1(

j Þ i
qj ln~Xi j /R0!

1(
j Þ i

pW j•XW i j

uXi , j u2
1(

j Þ i
qj

XW i , j•RW i

uXi , j u2
. ~6!

RW i denotes the radius vector of points on the surface of dr
let i ; the last term appears as the expansion ofqj lnurWi1RW i

2rW j u. Equation~6! contains two parts: one that depends
the direction ofRW i and one that does not. This results in tw
sets of linear equations for the charges and the dipoles:

c`1
a

Ri
5qi lnRi /R01(

j Þ i
qj ln~Xi j /R0!1(

j Þ i

pW j•XW i j

uXi , j u2
,

~7!
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57 1897OSTWALD RIPENING IN TWO DIMENSIONS: . . .
pW i•RW i

Ri
2 1(

j Þ i
qj

XW i , j•RW i

uXi , j u2
50. ~8!

As we will see, the last term in Eq.~7! is O„(R/X)2
…, i.e.,

smaller than the other terms, and can be omitted. Thus
system of equations

c`1
a

Ri
5qi lnRi /R01(

j Þ i
qj ln~Xi j /R0! ~9!

determines the charges. Since Eq.~8! should be satisfied fo
any RW i , the dipoles are determined by

pW i

Ri
2 52(

j Þ i
qj

XW i , j

uXi , j u2
. ~10!

The physical meaning of Eq.~10! is that the dipole associ
ated with dropleti is simply related to the electric field in
duced at its center by all the other charges. Once the cha
are obtained from solving Eq.~9!, their substitution in Eq.
~10! determines the dipoles.

The normal component of the flux at the boundary
droplet i is given by

¹nc~rW i1RW i !5
qi

Ri
22

pW i•RW i

Ri
3 , ~11!

where Eqs.~6! and~10! were used. The normal flux has tw
contributions: an isotropic part, giving rise to a rate
change of the radius, given by

dRi

dt
5

qi

Ri
, ~12!

and an anisotropic part, due to the dipole term in Eq.~11!.
The contribution of the dipole part to thetotal flux vanishes;
it induces deposition of material on one side of the drop
and evaporation from the opposite side. We approximate
effect of the dipole flux byshifting the positionsof the cir-
cular droplets~see below!. We also show~in Appendix A!
that in the low concentration (w!1) limit the effect of the
dipoles is negligible; we discuss this limit first, working wit
charges only, and then include the dipoles.

Equation~12! implies that the rate of change of the ar
of droplet i is proportional to its chargeqi . Using qi from
Eq. ~12! in Eq. ~9! eliminates the concentration fieldc(rW)
from the problem and, after proper rescaling of variables,
following set of equations for the temporal evolution of t
radii results:

~11Ri /Rc!5(
j

L i , j Ṙj , ~13!

where Rc5a/c` is a capillary length and the matrixLi , j
defined in two dimensions~2D! as @15#

Li , j5RiRj3H ln~Ri /R0! if i 5 j

ln~Xi , j /R0! otherwise.
~14!
he
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Clearly, solving the system of equations~13! and ~14! is a
much simpler computational task than solving the Lapla
problem ~4! with moving boundary conditions on the su
faces of the droplets. Note, however, that the matrix e
mentsLi , j grow with the distance between the droplets. B
cause of this, finite-size effects become crucial: All dropl
in the bulk feel the boundary. The simplest way to avoid t
problem is to consider the system with periodic bound
conditions; the interaction of a pair of droplets contains
infinite sum of logarithms, corresponding to all theimagesof
these droplets. Yaoet al. @18# have summed this series usin
Ewald summation techniques.

The problem is further complicated by the need to inv
the N3N matrix Li , j at eachtime step in order to get from
Eq. ~13! explicit expressions forṘi . Thus, solving the sys-
tem of equations~13! and~14! takesN3 operations per time
step; therefore, each run costsN4 operations. This necess
tates huge CPU times~the simulations of Yaoet al. @18# took
about 1000 CPU h on an IBM 3090 computer for a system
about 3000 droplets!.

Beenakker@19# has solved an analogous problem in 3
by truncating the matrixLi , j @defined in 3D in a way analo
gous to Eq.~14!#. He took into account only the interaction
between droplets whose separation does not exceed a th
old, reducing in this way the number of droplets with whic
a given one interacts to about 20. The physical motivat
for such truncation isscreening @20,21#; droplets whose
separation exceeds the screening length do not affect
other. It should be noted that with such a truncation the to
volume of the droplets is not conserved and Beenakker
to adjustRc in Eq. ~14! at each time step in order to resto
volume conservation.

Akaiwa and Meiron@17# used the analogous truncatio
procedure in 2D. Although the interactions between
charges are expected to be well screened even in 2D, fo
truncation of the matrix seems problematic in this ca
Since the matrix elements grow with distance between
droplets, the elements of theinversematrix as functions of
the cutoff should contain large fast oscillating compone
~unlike in 3D, where their dependence on the cutoff
smooth!. Nevertheless, their results~in particular, the corre-
lation functions! compare well with experiment. Apparently
this success is due to the fact that these oscillations are
fectively averaged out during the run.

Our goal was to find an analytic way of approximatin
L̂21 in a manner that reflects screening as the physical b
of the approximation scheme. OnceL has been inverted, we
can integrate the equation

Ṙi5(
j

L i , j
21~11Rj /Rc! ~15!

numerically. The approximation introduced in this work c
be summarized by the expression

Ṙi5(
j

L i , j
215

1

RiK0~Ri /zsc!
(

j ~Þ i !

K0~Xi , j /zsc!

K0~Rj /zsc!
S 1

Rj
2

1

Ri
D ,

~16!

whereK0 is the zeroth-order modified Bessel function of t
second kind~also called the MacDonald function!. Since
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1898 57BORIS LEVITAN AND EYTAN DOMANY
K0(x);exp(2x) for largex, the parameterzsc has the mean-
ing of a screening length. In the mean-field limit~i.e., for
very small area fractionw) it is determined by the equatio

zsc
2252pnK 1

K0~R/zsc!
L . ~17!

However, for larger fractions, where the effects of corre
tions become important,zsc is determined by a more com
plicated condition, as discussed in Appendix B. In practi
in our simulations forw50.13 we usedzsc52.73R̄, as de-
termined by Table I~see Appendix B for details!.

In spite of various approximations that were made to
rive Eqs.~16! and~17!, we believe that they contain the mo
important aspects of the dynamics present in Eq.~13!. One
can see explicitly the effects of screening, with the screen
length appearing naturally in the derivation presented bel
The total area is conserved explicitly. In the limit of ve
small minority phase area fractions, where^R&/zsc→0, our
description is consistent with Marqusee’s mean-field the
@7#, which leads to the following dynamical equation for th
droplet’s radius:

R
dR

dt
5k~R/z!S 1

R
2

1

Rc
D , ~18!

wherek(x)5xK1(x)/K0(x), while z is defined by the equa
tion z2252pn^k(R/z)&. Since xK1(x)→1 for x→0, we
find k(x)→1/K0(x) and our definition of the screenin
length coincides with his. We used the formalism presen
above to integrate the evolution of large assemblies of dr
lets and found that at relatively large values of the area fr
tion w the droplets’ motion, induced by the so far neglect
dipoles, becomes important and must be taken into acco

We evaluate now the contribution of the dipoles to t
shift of the droplets’ centers of massdrW i , defined by

MdrW5E RW dm. ~19!

Here the integration is over the boundary of a droplet;RW is a
radius vector on its boundary,M5rpR2 is the total mass of
the droplet (r is the density; it will drop out of the fina
result!, anddm is the additional mass adsorbed~or lost! lo-

TABLE I. Various quantities related to the self-consistent det
mination off(r ) ~with the depletion zones taken into account! for
different area fractionw. R0 andz0 are~simultaneous! solutions of
Eqs.~B19!, ~B21! ~with d52.15̂ R& in both!, and~B25!; zm f is the
value of the screening length as obtained in Sec. III~neglecting the
effect of the depletion zones!; zscr is determined by Eq.~B26! with
f(r ) obtained by numerical integration. All lengths are given
units of ^R&.

w R0 z0
m f z0 zscr

0.001 51.35 45.99 45.96 45.922
0.01 15.59 11.77 12.13 11.71
0.05 8.10 4.08 4.73 4.00
0.13 6.14 1.88 2.73 1.94
-

,

-

g
.

y

d
p-
c-
d
nt.

cally, due to the shift of the boundary during the intervaldt.
The anisotropic component of the local velocity of the dro
let’s boundary is given by

v52Jn52
2pcosu

R2 ,

whereu is the polar angle betweenRW andpW . The mass added
at RW is

dm5r~v dt!~R du!52~2p/R!r dt cosu du,

so that~see also Appendix A of@9#!

drW

dt
52

2p

pR3E RW cosu du52
2pW

pR2E cos2u du52
2pW

R2 .

Finally,

drW i

dt
52

2pW i

Ri
2 52(

j Þ i

qj

uXi , j u
XW i , j

uXi , j u
. ~20!

Note that both sides of Eq.~20! have the same dimensiona
ity since the chargesqi are measured in area per time@see
Eq. ~12!#.

The procedure for solving Eqs.~13! and ~14! for the dy-
namics of the droplets’ radiiRi , together with Eq.~20! for
their positionsrW i , is as follows. For givenrW i and Ri we
invert L̂, obtain dRi /dt @or qi as given by Eq.~12!#, and
integrate one time step. Next, substitutingqi into Eq. ~20!,
we obtain new values ofrW i and the procedure is repeated.

The sum on the right-hand side of Eq.~20! appears to be
problematic: Assuming that the droplets’ charges are unc
related~while the total charge is zero!, one can see that th
mean square of this sum diverges logarithmically with t
size of the system. However, as we show in Appendix A,
correlations between the charges, provided by screening
sure the convergence of this sum, so that it can be evalu
using a reasonable fraction of its terms. Actually, aheuristic
formula, simpler than Eq.~20!, can be used to evaluate th
droplets’ shifts in practical simulations. As explained in A
pendix A, Eq.~20! can be replaced by

drW i

dt
52(

j Þ i

K j ,i

kikj
S 1

Ri
2

1

Rj
D XW i , j

uXi , j u2
, ~21!

whereKi , j5K0(Xi , j /zsc) andki5K0(Ri /zsc). Although the
approximation leading to this formula is not clearly esta
lished, our simulations show that it works as well as t
more rigorous equation~20!. At the same time it is much
more economic because only droplets that lie within
screening length~from the droplet whose shift is evaluated!
contribute to the sum.

In the sequence of approaches to the Ostwald ripen
problem in two dimensions, ranging from the Cahn-Hillia
equation to Marqusee’s mean-field theory, our model, wh
includes only the pairwise interaction between the drople
can be viewed as theminimal extensionof the mean-field
approach. This concerns our Eq.~21! @in comparison with

-
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57 1899OSTWALD RIPENING IN TWO DIMENSIONS: . . .
Eq. ~20!# as well. We believe that our approach constitu
the simplest step that can be taken beyond simple mean fi

Our program is as follows. In the next section we pres
a few universal properties of the matrixL. This is followed
by Sec. III, where we derive the main result@Eq. ~16!# using
a mean-field-type approximation toL21. Numerical solu-
tions of the resulting dynamics, based on Eq.~16! and Eq.
~20! or ~21!, are presented in Sec. IV and compared w
experiments by Stavans and Krichevsky. Section V pres
a short summary of our approach and results.

II. SUM RULES

We present now some important properties of the ma
L21 that lead to useful ‘‘sum rules.’’ The first claim is tha

(
i

L i , j
21Ri5(

j
L i , j

21Rj→0 , ~22!

the sum approaching zero as the system size increases.
relationship is analogous to one presented for the th
dimensional case by Beenakker and Ross@22#. We present
here arguments~which seem to us simpler than those of R
@22#! for the validity of Eq. ~22! in 2D. First consider the
quantity

aj5(
i

L i , j /Rj5(
i

Ri ln~Xi , j /R0!. ~23!

The sum is clearly dominated by regions that are far fromrW j ;
in the absence of long-range correlations the compositio
such regions does not depend on the identity of dropletj . On
the other hand, the contribution of those dropletsi that lie
near dropletj will , in general, depend onRj . By ‘‘near’’ we
mean the region for which correlationsare important. The
size of this region is, however, small~on the order of the
screening area; see below!, the values ofXi j in this region
are small, and the contribution from it is negligible compar
to those from the far-away parts of the plane. That is,
increasing system sizeaj→`, whereas the contribution from
the correlation region remains finite. Hence we can write

aj5(
i

L i , j /Rj.a→`. ~24!

Next, consider the sum

15(
k

d ik5(
k

(
j

L i , j
21L j ,k5(

j
L i , j

21Rj(
k

L j ,k /Rj

5(
j

L i , j
21Rjaj . ~25!

Using now Eq.~24!, we get

a(
j

L i , j
21Rj.1, ~26!

so that
s
ld.
t

ts

x

his
e-

.

of

d
r

(
j

L i , j
21Rj.a21→0 ~27!

and hence statement~22! holds in the limit of large system
size. An immediate consequence of Eq.~27! is obtained by
using it in Eq.~15!, yielding

Ṙi5(
j

L i , j
21 . ~28!

Thus we see that the lengthRc drops out from the description
of the dynamics of the system.

Multiplying by Ri , summing overi , and using again Eq
~27!, we establish area conservation

(
i

RiṘi5(
j

S (
i

L i , j
21Ri D 50 ~29!

as a consequence of our sum rule. Another important co
quence is the following observation:Li j

21 , the elements of
the inverse matrix, areindependent of the parameter R0. To
see this, take the derivative of (L21L) i ,k with respect to lnR0:
Clearly, (L21)8L1L21L850 and hence

~Li ,m
21!852(

j ,k
Li j

21L jk8 Lkm
21 . ~30!

However, from Eq.~14! we immediately get that (L j ,k)8
52RjRk , which when used in Eq.~30! gives

~Li ,m
21!852(

j
(

k
~Lk,m

21 !8RkLi , j
21Rj , ~31!

and when Eq.~27! is used here we get

~Li ,m
21!850 ~32!

and henceLi j
21 does not depend onR0; in view of Eq. ~28!

the system’s dynamics is therefore also independent ofR0.

III. MEAN-FIELD APPROXIMATION TO L 21

Let us decompose the matrixL̂ of Eq. ~14! to its diagonal
and off-diagonal parts

L̂5L̂02L̂1 , ~33!

where (L̂0) i , j5d i , jRi
2ln(Ri /R0) and (L̂1) i , j5

2RiRj ln(Xi,j /R0). Note that only the off-diagonal part con
tains interactions between different droplets. One could c
sider an expansion ofL̂21 in powers of the interaction

L̂215~12L̂0
21L̂1!21L̂0

215 (
n50

`

~ L̂0
21L̂1!nL̂0

21 , ~34!

with L̂0
21 given by

~ L̂0
21! i , j5d i , j

1

Ri
2ln~Ri /R0!

. ~35!
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Clearly, for matrix elements that correspond to we
separated droplets~i.e., whenXi j @R0), terms of ordern
11 will be larger than those of ordern: that is, the series
diverges formally and in order to obtain meaningful resu
one should perform some kind of partial summation to
orders. To do this we introduce theT matrix, defined by

L̂215L̂0
211L̂0

21T̂L̂0
21 . ~36!

To ensure that( jL i , jL j ,k
215d i ,k , T̂ has to satisfy the equatio

T̂5L̂11L̂1L̂0
21T̂. ~37!

For the sake of convenience we introduce a new matrixf̂,
defined by

Ti , j5RiRjf i , j . ~38!

Once the matrixf i , j has been found, it is straightforward t
write down T̂ and, using Eq.~36!, the inverse matrixL̂21.
Rewriting Eq.~37! in terms off̂, we get

(
j ~Þ i !

1

ln~Rj /R0!
ln~Xi , j /R0!f j ,k1f i ,k

52~12d ik!ln~Xi ,k /R0!. ~39!

For the diagonal elements this takes the form

fk,k52(
j Þk

1

lnRj /R0
ln~Xk, j /R0!f j ,k , ~40!

whereas for the off-diagonal elements we obtain from E
~39!

(
j Þ i ,k

1

lnRj /R0
ln~Xi , j /R0!f j ,k1f i ,k52gklnXi ,k /R0 ,

~41!

where

gk511
fk,k

ln~Rk /R0!
. ~42!

It should be noted that Eqs.~40!–~42! are exact. In principle,
for any configuration of droplets, the set of equations~39!
are to be solved for the matrix elementsf i ,k . We approxi-
mate the solution of this problem in amean-fieldspirit. The
central premise of this mean-field approach is that the
diagonal matrix elementsf i , j depend only on the distanc
Xi , j , i.e.,

f i , j5f~ ur i
W2r j

W u!. ~43!

That is, we are interested only in thepairwise interaction
between the droplets~neglecting any possible dependence
f i , j on other droplets!. The analogous approximation for th
diagonal elements is that they are all equal, i.e.fk,k

m f is inde-
pendent ofk,

fk,k'fk,k
m f5f0 . ~44!
s
ll

.

f-

f

To obtain manageable mean-field equations the follow
simplifying assumptions are made:~i! In sums such as Eqs
~40! and ~41! replace 1/ln(Rj /R0) by its average value@23#,
~ii ! approximate these sums by integrals, and~iii ! set in Eq.
~41! gk5g for all k ~i.e., impose the independence ofk). We
will discuss and justify these steps below, but before do
that, we investigate the resulting approximation to Eq.~41!,
given by

2
1

2p
z0

22E ln~Xi , j /R0!f~Xj ,k!d
2r j1f~Xi ,k!

52g lnXi ,k /R0 , ~45!

where

z0
2252pnK 1

ln~R0 /R!L '2pn
1

ln~R0 /^R&!
~46!

and the angular brackets denote averaging over the distr
tion of droplet sizes~that is, the average value obtained
the particular droplet configuration in whichL̂21 is evalu-
ated!.

The integral equation~45! can be solved easily by oper
ating with , i

2 on the left- and right-hand sides. Using th

identity ,2lnr52pd(rW), we obtain the following differential
equation forf(x):

2z0
22f1,2f522pgd~rW !. ~47!

Its solution is the MacDonald function

f i ,k5f~Xi ,k!5gK0~Xi ,k /z0!, iÞk ~48!

K0~r /z0!'H 2 ln~r /2z0!2C, r !z0

Apz0

2r
e2r /z0, r @z0 ,

~49!

whereC'0.5772 is Euler’s constant.
Let us briefly discuss this result. First of all, note th

self-consistency of the approximation imposes positivity
z0

2, i.e., R0@^R&. This is indeed the case, as will be di
cussed below. Next note that the divergence off(r ) at short
distances is an artifact of the approximations we made
replacing the exact discrete equation~41! by the continuous
equation~45!. This divergence has no physical consequen
since the diagonal elements of thediscretematrix f̂ are not
given by takingr→0 in the solution of Eq.~47!; rather, they
are determined by Eq.~40!. One should note also that ifgk
were to depend onk the result~48! would have become
f i ,k5gkK0(Xi ,k /z0), implying thatf i ,kÞfk,i , whereas the
matricesT̂ andf̂ must be symmetric@see Eqs.~36! and~38!

and remember thatL̂ is symmetric#.
The diagonal elements are expressed in terms of the

diagonal ones in Eq.~40!; using there the approximation
listed above and the mean-field expression~48! for the off-
diagonal elements, Eq.~40! becomes
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fk,k'
1

2p
z0

22E ln~Xk, j /R0!K0~Xj ,k /z0!d2r j5f0 ,

~50!

as anticipated in Eq.~44!. Using this in Eq.~42! yields

gk511
f0

ln~Rk /R0!
,

and in order to get a consistent mean-field approach, withgk
independent ofk @as required by assumption~iii !#, we must
havef050. To setf050 we will now use our freedom to
adjust the parameterR0. As discussed in Sec. II, we are fre
to vary this parameter since it does not affect the dynam
@24#. Thus we arrive at the following condition onR0:

f05
1

2p
z0

22E ln~Xk, j /R0!K0~Xj ,k /z0!d2r j50. ~51!

After some simple but lengthy transformations, given in A
pendix C, Eq.~51! becomes the following approximate e
pression for lnR0:

K 1

ln~R0 /R!L ' K 1

K0~R/z0!L . ~52!

Substituting Eq.~52! into Eq. ~46! yields a closed equation
for z0, with no dependence onR0:

z0
2252pnK 1

ln~R0 /R!L '2pnK 1

K0~R/z0!L . ~53!

Note that once we findz0, we can use this equation also
determineR0. This will not be necessary sinceR0 drops out
of the dynamic equations, as shown below. Equation~53! is
almost identical to Marqusee’s expression for the screen
length. In principle we can now proceed as planned; for a
droplet configuration evaluatez0, calculate the mean-field
approximation to the matrixf̂,

f i , j'K0~Xi , j /z0!, fk,k'0, ~54!

substitute into Eqs.~38! and~36! to getL̂21, and use it in the
dynamics equation~28!. There is a problem doing thi
though. An important property of theexact L̂21 is that it
satisfies the sum rule~27! and hence the total area of a
droplets is conserved by the dynamics@see Eq.~29!#. Since
Eq. ~54! is an approximation, we have to check the exten
which the sum rules are satisfied by our approximatef̂. Sub-
stituting Eq.~54! into Eq. ~36! yields

L̂ i ,i
215

1

Ri
2ln~Ri /R0!

, L̂ i , j
215

K0~Xi , j /z0!

Ri ln~Ri /R0!Rj ln~Rj /R0!
.

~55!

Note thatL̂ i , j
21 are small at distancesXi , j@z0; hence the pa-

rameterz0 should be interpreted as ascreening length. At
short distances the solution of Eq.~47! behaves like the
lowest-order approximation@i.e., stopping atn51 in the ex-
pansion~34!#. Using these expressions in the sum rule~27!
gives
s

-

g
y

o

(
j

L i , j
21Rj'

1

Ri ln~Ri /R0!F11(
j Þ i

1

ln~Rj /R0!
K0~Xi , j /z0!G .

~56!

When we approximate the sum by an integral, in the spirit
our mean-field approach, it becomes

(
j Þ i

1

ln~Rj /R0!
K0~Xi , j /z0!→2

1

2p
z0

2E K0~r /z0!d2r 521

and the right-hand side of Eq.~56! vanishes, so that in the
mean-field limit~i.e., for vanishing area fraction; see Appe
dix D! when our approximations become exact, the sum r
is indeed satisfied. If, however, we use Eq.~55! for practical
calculations at a nonvanishing area fraction, the sum r
~and hence area conservation! will not be satisfied rigor-
ously.

This problem can be overcome rather simply in the f
lowing way. Adopt the mean-field approximation~55! for the
off-diagonalelements ofL̂21 and use the sum rule~27! to
determine its diagonal elements:

L̂ i ,i
2152

1

Ri
(
j Þ i

L i , j
21Rj .

The result for both diagonal and off-diagonal elements
L̂21 can be summarized as

L̂215H 21

Ri
2ln~Ri /R0! (

j ~Þ i !

K0~Xi , j /z0!

ln~Rj /R0!
if i 5 j

K0~Xi , j /z0!

RiRj ln~Ri /R0!ln~Rj /R0!
otherwise.

~57!

With this approximation forL̂21 the sum rule is of course
exactly satisfied in every step and area is conserved. In
mean-field limit the sum in Eq.~57! yields 21 and the ex-
pression forL̂ i ,i

21 obviously reduces to the naive one, give
by Eq. ~55!.

Using Eq.~57! in Eq. ~28!, we obtain now a rather elegan
expression forṘi , the rates of change of the droplets’ rad

Ṙi5(
j

L i , j
215

1

Ri ln~Ri /R0! (
j ~Þ i !

K0~Xi , j /z0!

ln~Rj /R0! S 1

Rj
2

1

Ri
D .

~58!

For a given droplet configuration we have now an expli
expression for the dynamics of the droplets’ radii~note that
the values of the parametersR0 and z0 are also determined
by the configuration!. As a final ‘‘cosmetic’’ adjustment, we
use Eq.~52! to replace logarithms byK0 ~thereby eliminating
R0 from the dynamics!, yielding the equation we used in ou
numerical study:

Ṙi5
1

RiK0~Ri /z0! (
j ~Þ i !

K0~Xi , j /z0!

K0~Rj /z0! S 1

Rj
2

1

Ri
D . ~59!

To complete the treatment we now justify our naive a
proach, discuss the regime in which our approximation
expected to hold, and check whether various assumpt
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1902 57BORIS LEVITAN AND EYTAN DOMANY
that were made are self-consistent. First of all we assum
that R0 can be chosen so thatz0

2.0. Now we can see from
Eq. ~52! that the ‘‘optimal’’ R0'z0, and since in the mean
field limit z0@Ri this means thatR0@Ri for all i , so that by
Eq. ~46! z0

2 is indeed positive and our approach is se
consistent.

The central point of our approach was replacement of
sum ~41! by an integral:

(
j Þ i ,k

1

lnRj /R0
ln~Xi , j /R0!f j ,k

→nK 1

lnRj /R0
L E ln~Xi , j /R0!f~Xj ,k!d

2r j . ~60!

It is intuitively clear that such a substitution is valid as lo
asNz , the number of droplets in the screening zone, is lar
Now, after having obtained the solutionf, we can indeed
show that the conditionNz@1 holds when ln(w21)@2p ~see
Appendix D!. Therefore, the conditions for validity of th
mean-field result lead to a self-consistent theory only in
limit of very low area fractionw→0; even forw;0.001,
there are only a few droplets in the screening zone.

For the experimental valuew50.13,z0 is about the mean
droplet radius, which makes our approximation complet
invalid. Such a small value ofz0 appears because above w
have neglectedall correlations between the positions of th
droplets. In particular it turns out that each of the droplets
surrounded by adepletion zone, from which all possible
neighbors are excluded~at least the distance between t
centers of any two droplets must exceed the sum of t
radii!. In practice~as seen from our numerical solutions; s
below! the mean diameter of the depletion zonesd is ap-
proximately 2.2̂R&. The corrections provided by includin
the effects of the depletion zones are discussed in Appe
B. As is shown there, taking the depletion zones into acco
does not change the previously obtained expression for
~16!, but the mean fieldz0 is replaced by a larger screenin
length (zsc52.73̂ R& for w50.13), which becomes compa
rable to the nearest neighbors’ distance. Although this
provement is not sufficient to justify our mean-field a
proach, the numerical results~obtained with the effect of
depletion zones taken into account! presented in the nex
section are in a rather good agreement with the experim
that were performed atw50.13.

IV. THE ALGORITHM AND RESULTS
OF THE SIMULATIONS

In this section we describe our numerical procedure
the results of our simulations. Since we would like to rea
the scaling state with a sufficiently large number of dropl
~to reduce the effect of fluctuations!, we must start from
initial states with many droplets and allowing this large s
tem to evolve for long times. In order to do this with reaso
able computational resources one has to resort to approx
tions that accelerate the numerical procedure. Rewrite
~59! in the form

dSa

dt
5Va[(

b
va,b , ~61!
ed

e

e.

e

y

s
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q.
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-
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q.

va,b5
Ka,b

kakb
S 1

Rb
2

1

Ra
D , ~62!

where we used the abbreviated notation

Ka,b[K0~Xa,b /zsc!, ka[K0~Ra /zsc!, Sa[Ra
2/2.

The screening length that appears in the argument of
MacDonald functions iszsc52.73R̄, as follows from the
analysis of the depletion zones presented in the Append
~see Table I atw50.13).

Say we wish to integrate Eqs.~61! and ~62! naively. For
each time step we have to evaluate allN(t) velocitiesVa ,
with each velocity given by a sum ofN terms, i.e.,Nop
'N2 operations per time step. If we have initiallyN droplets
and wish to reach the late stages with a few percent sur
ing, we would have to performNsteps;N time steps of inte-
gration, as was done by Yaoet al. @18#. This is so because i
the time step is greater than the lifetime of some droplet,
area will becomenegativeat the end of the time step, whic
leads to an increase of the area fraction of the surviv
droplets. Therefore, apparently in order to guarantee e
area conservation one must eliminate each shrinking dro
separately, restricting the time step by the next vanishing
the same time, the detailed evolution of the smallest dro
is absolutely unimportant for us. Rather we would like
chooset to be not smaller than it is needed to ensure that
relative change of̂ R&, the meanradius of the droplets, is
small during one time step. For this reason, Akaiwa a
Meiron @17# simply removed the droplets withR,e^R& with
e50.1beforeperforming the time step. Letf s be the fraction
of the droplets that are eliminated in each time step~it is kept
constant, to a good approximation, by fixinge). Then the
number of steps needed for a run is reduced toNsteps
'(1/f s)lnN. However, their procedure still did not guarant
precise area fraction conservation: When the number
droplets was reduced by a factor of 5~from 100 000 to
20 000!, the change ofw was about 2%@18#.

We require our algorithm to conserve area fractionexactly
and nevertheless to reduce bothNsteps and Nop . We
achievedNop;N andNsteps;(1/f s)lnN; that is, our scheme
requiresO(NlnN) operations for the entire evolution.

To reduce theN dependence ofNop we note that a drople
b, whose separation froma exceeds considerably th
screening length, will have only a small contribution toVa .
As will be shown below, only droplets from thefirst layer
neara have a significant contribution and therefore only t
neighbors ofa are included in the sumVa5(bva,b . There-
fore, we haveNop;N ~replacingN2).

To reduceNsteps to Nsteps'(1/f s)lnN, conserving the
area fraction, we should treat accurately the vanishing of t
small droplets, instead of simply removing them before p
forming the time step, as is done in Ref.@18#. Putting this
into practice requires care however. Let us consider the
tem of droplets at two consecutive timest0 and t15t01t.
We call all droplets that survive tot1 large and denote them
by indicesi and j , whereas droplets that vanished beforet1
are called small and are marked by indicesn,m. With this
notation Eqs.~61! and ~62! become
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dSi

dt
5(

j
v i , j1(

m
v i ,m , ~63!

dSm

dt
5(

n
vm,n1(

j
vm, j . ~64!

We chooset to be small enough so that the density of sm
droplets is small; hence the typical distance between
small droplets exceeds considerably the screening len
Therefore, to an excellent approximation two small dropl
do not interact~i.e. Km,n'0) and the first term in Eq.~64!
can be neglected. Thus Eq.~64! becomes

dSm

dt
5(

j
vm, j5Vm . ~65!

Then a small droplet will live for time

tm52Sm /Vm . ~66!

Turning now to integrate Eq.~63!, we note that the term
v i ,m , which represents the contribution of the fast dropletm
to the growth of the slow dropleti , is actually present only
during the intervaltm and not the entiret. Hence we must
use

Si~ t1t!5Si~ t !1S (
j

v i , j D t1(
m

v i ,mtm ,

which can be rewritten, using Eq.~66!, as

Si~ t1t!5Si~ t !1S (
j

v i , j1
1

t(m Sm

v i ,m

Vm
D t. ~67!

This is, in fact, the discrete-time form of the differenti
equation

dSi

dt
5(

j
v i , j1

1

t(m Sm

vm,i

Vm
. ~68!

This equation has a very simple interpretation: Thei th large
droplet obtains from each of the small droplets a part of
latter’s area, proportional to the strength of the interact
between the droplets. Equation~67! is the main working for-
mula of our algorithm. The two terms in the parenthes
correspond to~i! redistribution of the material between th
large droplets and~ii ! absorption of the material that leave
the small droplets onto the large ones. Using Eq.~67! elimi-
nates the fast scale of the dynamics; the time scalet is to be
chosen so that the assumptions made above are indeed
fied. Our scheme is put to practice by first choosing a c
venient fraction of small droplets, which is then kept~ap-
proximately! fixed throughout the run~typically we usedf s
'0.003, which corresponds to removing;80 droplets at
each time step when the system contains 28 000 droplet!.

Finally, we should take into account the shift of the dro
lets. For that one can use either the exact relation

drW i

dt
52(

j Þ i

qj

uXi , j u
XW i , j

uXi , j u
, ~69!
l
o
th.
s

e
n

s
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-

where the chargesqi5RiṘi are evaluated at each time ste
or the heuristic formula

drW i

dt
52(

j Þ i

K j ,i

kikj
S 1

Ri
2

1

Rj
D XW i , j

uXi , j u2
, ~70!

discussed in the Introduction and Appendix A. Then we p
ceed according the following steps.

~i! Pick Rs such that the number of droplets withRn
<Rs is approximatelyNs5 f sN. ~In practiceRs /^R& is kept
fixed; in the scaling state this is the same as fixingf s .)
Identify these as small droplets and calculate allVm using
Eq. ~64!.

~ii ! An estimatet (0) for the time step is determined as th
interval during which all small droplets vanish,

t~0!5max
m

$tm%,

wheretm is determined by Eq.~66!.
~iii ! Calculate the velocities of the large dropletsVi

5( jv i , j ~summing over neighbors ofi only; hence this step
takes;N operations!. Note that some dropleti that has been
classified as large may in fact disappear during the inte
t (0); this happens if the velocity is such thatSi,2Vit

(0).
All such droplets, if any, are collected and reclassified
small, a new value fort is determined, and the velocitie
~bothVm andVi) are recalculated. Usually one such iterati
suffices to reach a self-consistent classification.

~iv! Integrate Eq.~68! one stept, that is, calculate new
areas according to Eq.~67!.

~v! Calculate the shifts of the droplets according to eith
Eq. ~69! or ~70! and repeat the procedure.
Since the relaxation time needed to reach the scaling s
depends on how close the initial configuration is to this sta
one would like to choose the initial configuration reasona
close to it. We prepared our initial state as follows. We ge
erated a set ofN550 000 droplets with a distribution of rad
close to the expected one~determined from short preparator
runs!. We scattered them over the plane at random but
that each droplet is surrounded by a small depletion z
~free of other droplets!, to mimic the effect of correlations
that appear in the real evolving system. For this initial co
figuration we started a rather large time stept ~and run the
dynamics without moving droplets! yielding only an ap-
proximation to the true dynamics. This preliminary rela
ation went on until the number of droplets was reduced
N528 000. At this point a smaller time step was select
the droplets were allowed to move, and we started to t
measurements. All the results presented below are aver
over eight runs in order to reduce statistical fluctuations.

In our first simulations we did not take into account t
shift of droplets. As is shown in Appendix A, this froze
droplets approximation might be good even for fractions
large asw50.13. In order to test this, we executed runs w
frozen droplets and measured the fractionf c of droplets
crossing each other, as a function of the number of drop
in the system. These data are presented in Fig. 1. It sho
considerable growth off c with time ~from zero at N
528 000 to 10% atN51000) and there is no tendency to
wards stabilization. This proves that the droplets’ motion h
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1904 57BORIS LEVITAN AND EYTAN DOMANY
a considerable effect on the dynamics of the system
hence the model of frozen droplets is invalid for such la
w.

Taking the droplets’ shift into account improves this sit
ation drastically. We used both Eqs.~69! and ~70! ~called
modelsA and B, respectively; see below! for the droplets’
motion. Figure 1 shows that both modelsA andB give rise
to much smaller values off c and that it saturates at lon
times. Interestingly, while there is no essential difference
tween these two models, the heuristic modelB exhibits
slightly lower values off c than modelA. In order to test the
convergence of the sum in Eq.~69! we executed runs with
different numbers of terms in the sum taken into accou
namely, we varied the size of the summation box fromb
54.1zsc to b55.8zsc and found no noticeable difference
the behavior off . Thus we conclude that we have achiev
proper convergence of Eq.~69!.

We now present results of our simulations, performed
the same relative area fractionw50.13 that was studied ex
perimentally@3#. We measured the position correlation fun
tion G(r ), that is, the mean number of the droplets who
centers lie within an annulus@r ,r 1dr# around the center o
a given one. Figure 2 presentsG(r ) obtained running mode
B at three consequent moments of time, when the sys
contained 3000, 2000, and 1000 droplets, respectively~each
of the curves is averaged overeight runs!. We see that the
three curves coincide up to their fluctuations, which prov
that the scaling state has indeed been reached. The c
sponding experimental data are also presented in this fig
good agreement is seen. Figure 3 compares the position
relation functions obtained by the modelsA andB ~averaged
over time in the scaling state!. This proves that our heuristi
formula works perfectly. The experimentalG(r ) has a no-
ticeable maximum atr'4.7, while for our curves the maxi
mum is smaller; at the same time our curve is rather clos
the result of Masbaum~see Fig. 1~a! in Ref. @14#!, which has
a small peak as well, which cannot be distinguished clea
from the fluctuations. Note that in Ref.@14# the data were

FIG. 1. Time dependence off c , the fraction of crossing drop
lets, as obtained from the frozen droplets model~empty squares!;
from modelB, which uses the heuristic Eq.~70! for the droplets’
shift ~full squares!, and from modelA, which uses the exact Eq
~69! for the droplets shift~large circles and small circles for sma
and large summation block sizesb54.1z and b55.8z, respec-
tively; see explanations in the text!. The lines are guides for the eye
The growth off c observed for the frozen droplets model indicat
that it is not valid for the area fractionw50.13. On the other hand
once the droplets are allowed to move,f c decreases to very sma
values irrespective of whether modelB or A is used.
d
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taken withN;800 droplets, whereas our data are well av
aged ~effectively they correspond to a system of abo
50 000 droplets in the scaling state! and the small peak is
definitely observed.

Analysis of the distribution of the droplets’ radii at thre
consequent moments of time, where the system conta
3000, 2000, and 1000 droplets, respectively, also shows
the distribution achieved its stationary form. No clear diffe
ence between the modelsA and B was seen. The droplets
radii distribution in the scaling state, averaged over time,
obtained from our simulations~modelB), is shown in Fig. 4
together with the experimental results. A certain discrepa
is seen, however, that does not exceed by much the statis
errors of the experimental points.

Finally, we measured the charge correlation functions@3#,
which contain more detailed information about the syste
defined as follows. For a chargeqi calculateQ1(r ), the total
amount of similar charge asqi within an annulus@r ,r
1dr# aroundrW i , and define the function

FIG. 2. Correlation functions of droplets’ positionsG(r ) as
measured at different moments of time in the scaling state, co
sponding toN53000, 2000, 1500, 1300, and 1000 droplets pres
~small circles!. The weighted average of these runs~the weight of a
configuration is proportional to the corresponding number of dr
lets! is also shown~large circles!. These results were obtained usin
modelB. Note that all the lines are close to each other, indicat
that the system has indeed arrived at the scaling state. The ex
mental results of Krichevsky and Stavans, shown for compari
~squares!, are also close to ours.

FIG. 3. Weighted time average~the weight of a configuration is
proportional to its number of droplets! of the correlation functions
of droplets’ positionsG(r ) ~averaged over eight runs! for modelsA
and B in the scaling state~large circles and small circles, respe
tively!. The experimental results of Krichevsky and Stavans are a
shown ~squares!. This shows that the two models give indistin
guishable results that are in good agreement with experimen
well.
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g1~r !5^qiQ1~r !&.

Similarly we defineg2(r ) in terms of theoppositecharges.
These two functions, as obtained by simulation of the t
models, are presented in Fig. 5 together with the correspo
ing experimental data by Krichevsky and Stavans. T
agreement can be characterized as excellent. Again, the
no noticeable difference between the results of modelsA and
B.

One should notice that our definition of the charge cor
lation functionsg6(r ) is not precisely the same as that
Ref. @3#. Krichevsky and Stavans smeared a droplet’s cha
on its perimeter before calculatingQ6(r ), whereas we as
signed a droplet’s charge to its center. We believe, howe
that the smearing of the charge on the droplet’s perimete
no more than a way of smoothing the data and there is
essential difference between the two definitions.

V. SUMMARY

Ostwald ripening is the coarsening process, observed
ing the late stage of the evolution of a two-phase syst

FIG. 4. Y(R), the droplets’ rescaled size distribution in the sc
ing state at N53000 ~largest circles!, N52000 ~intermediate
circles! andN51000~small circles!. Each plot presents the averag
over eight runs. The line indicates the overall average. The exp
mental results of Krichevsky and Stavans are also shown~dia-
monds!.

FIG. 5. Charge correlation functions~see precise definition in
the text! for the same@g1(r )# and the opposite@g2(r )# charges, as
obtained using modelsA and B, compared with the experimenta
data of Krichevsky and Stavans~full circles and full squares for the
same and the opposite charges, respectively!. The lines are guides
for the eye. Our data present averages over eight runs. Note tha
fluctuations in this plot are larger than for the position correlat
function ~see Fig. 2!. We believe that the difference between t
results of the two models is due to the fluctuations. Interestin
modelB seems to be closer to the experimental points.
o
d-
e
is

-

e

r,
is
o

r-
,

where the droplets of the minority phase exchange mate
by means of diffusion. This process leads towards a sca
state in which the characteristic length scale grows with ti
according to the scaling lawR̃;t1/3, while all the statistical
properties~such as the droplets’ size distribution, positio
correlation functions, etc.!, once rescaled, remains fixed.

The problem of calculating these characteristics has b
studied in a number of detailed numerical simulations t
take into account all the complicated interactions betwe
the droplets, mediated by the diffusion field. These calcu
tions, although being exact, do not contribute much to
qualitative understanding of the importance of different co
ponents of the interaction between the droplets. On the o
hand, analytical mean-field treatments neglect all spatial
fects and seem to be oversimplified.

The aim of this paper was to construct and test a ‘‘mi
mal extension’’ of the mean-field approach that will take in
account spatial effects, keeping only the simplest interac
between the droplets. We calculated analytically an appro
mate form of these interactions using a mean-field approa
Only pairwise interactions between the droplets were p
served. We proposed a very efficient numerical algorith
which allows us to follow the evolution of tens of thousan
of droplets. We tested our approach by comparing its res
with the experimental data and found surprisingly go
agreement at a relatively large value of the minority pha
area fractionw50.13, where our approach to the interacti
between the droplets was not expected to work.

Trying to find the simplest model that reproduces the
perimental data, we examined the importance of a numbe
effects. Our findings are summarized as follows.

~i! Depletion zones have a considerable effect on
screening length, increasing it fromz51.88R̄ to z52.73R̄.
At the same time, as shown in Table I, the presence of
depletion zones almost does not affect the functional form
the pairwise interaction between the droplets.

~ii ! Our approach is based on the assumption of circu
droplets and the monopole plus dipole approximation for
diffusion field. The agreement obtained with the experim
indicates that at the values ofw studied higher multipoles
can be neglected.

~iii ! Even though inclusion of the depletion zones i
creases the screening lengthz too little to provide formal
validity to our approximation, our simulations show that
works even forw50.13.

~iv! The effect of the droplets’ motion is very importan
for large area fractions, although formally it could be r
garded as adiabatically small compared to the drop
growth.

~v! The expression that determines the shift of the dr
lets requires summation over a large number of droplets.
propose a much simpler heuristic formula~containing a sum
over the nearest neighbors only! that gives even better result
than the exact one.

An advantage of our method is its computational e
ciency; we are able to choose time steps no smaller t
required by physical reasonability, eliminating a large nu
ber of droplets at each step. At the same time, the total a
of the droplets is conserved exactly at each time step. T
makes our approach useful for extensive studies of the O
wald problem.
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APPENDIX A: ANALYSIS OF THE FORMULA
FOR THE DROPLETS’ SHIFT

The droplets’ shifts are determined by Eq.~20!:

drW i

dt
52(

j Þ i

qj

uXi , j u
XW i , j

uXi , j u
. ~A1!

First of all, using this formula we can show that in the lo
area fraction limit the shift of the positions can be neglect
Indeed,tsh , the characteristic time of a shift of a droplet
center of mass, is given by

tsh
21;

1

Xi , j
UdXW i , j

dt
U; qi

Xi , j
. ~A2!

The characteristic growth time of the droplet is@see Eq.~12!#

tgr
21;

1

Ri
UdRW i

dt
U; qi

Ri
2 . ~A3!

Comparing Eqs.~A2! and ~A3! we see that

tsh
21;tgr

21
Ri

2

Xi , j
2

5tgr
21 w

p
. ~A4!

That is, for small area fractions the motion of the drople
centers is adiabatically slower than their growth. Con
quently, one can neglect the droplets’ motion and the sys
is characterized only by the dynamics of the droplets’ radi
determined by Eqs.~13! and ~14!. Formally, one can expec
this approximation to be valid even forw50.13 ~used in the
experiments by Stavans and Krichevsky! and we have tried it
in our work ~see Sec. IV and Fig. 1!. Our simulations have
shown, however, that neglecting the droplets’ motion giv
wrong results and therefore the dynamics of therW i has been
taken into account.

Secondly, note that a rough estimate of the sum on
right-hand side of Eq.~A1! indicates that it exhibits bad con
vergence properties. Assumingqj to be uncorrelated random
variables with zero mean we get

K S drW i

dt
D 2L ;^q2&(

1

uXi , j u2
;^q2& lnLs , ~A5!

whereLs is the size of the system. A more accurate treatm
implies, however, that the sum does converge. According
Eqs.~12!–~16!

qj5Rj

dRj

dt
5 (

m ~Þ j !
K j ,mD j ,m ,

where
y-
n
,

.

’
-
m
s

s

e

nt
to

D j ,m5
1

kmkj
S 1

Rm
2

1

Rj
D

and we use the abbreviationsK j ,i5K0(Xj ,i /zsc) and
kj5K0(Rj /zsc). Then Eq.~A1! becomes

1

2

dXW i

dt
5 (

j ~Þ i !
Qj

~ i !
XW i , j

uXi , j u2
1 (

j ~Þ i !
(

m ~Þ j ,i !
Qj

~m!
XW i , j

uXi , j u2
,

~A6!

where

Qi
~ j ![K j ,iD j ,i

denotes the part of the charge on thei th droplet that is in-
duced by thej th one. The first term of Eq.~A6! determines
the shift of the droplet due to the direct material transfer
between this droplet and itsj th neighbors. This sum con
verges very well becauseQi

( j ) decreases exponentially wit
distanceXi , j . The second term accounts for the effect of t
redistribution of the material between thej th andmth drop-
lets. Since the internal sum~on m) contains a short-range
factor K j ,m , it is actually over az3z box around thej th
droplet. In this double sum, each term

Qj
~m!

XW i , j

uXi , j u2

can be paired with

Qm
~ j !

XW i ,m

uXi ,mu2
.

SinceQj
(m)52Qm

( j ) , these two contributions can be consi

ered as adipole. Thus eachz3z box represents a dipolePW
~randomly directed! with the dipole momentP;qz, whereq
is the characteristic scale ofQm

( j ) . Thus the second term in
Eq. ~A6! is now estimated as

~second term!; (
z3z boxes

PW

uXi , j u2
2

2~PW •XW i , j !XW i , j

uXi , j u4

;(
PW

uXi , j u2
. ~A7!

The mean of this expression is zero, while the mean squ
deviation is given by

;q2z2(
1

uXi , j u4
, ~A8!

which converges to a finite value. Thus, when calculating
sum in Eq.~A1!, we can restrict ourselves to only sever
nearest layers of neighbors.

Finally, one can use an even simpler heuristic formula
calculating the shift of the droplets. The meaning of Eq.~A6!
is that the motion ofi th droplet has two sources. The first
the material transferred between this droplet and itsj th
neighbors@the first term of Eq.~A6!#. The second is due to
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redistribution of the material between the surroundingj th
droplets themselves~the second term!. Although these con-
tributions are of the same order, in our case we have a re
to drop the second term~although it does not simplify com
putations, it does makes the model physically simpler!. The
shift of the droplets has a noticeable effect only at relativ
large fractions, where the interaction between the next n
est neighbors is considerably suppressed. Then, for a fi
configuration of the nearest neighbors of thei th droplet we
can vary the configuration of its next nearest neighbors. T
manipulation will not affect the first term of Eq.~A6!, while
it will reduce its second term. Thus, in the mean-field sp
of our model, we can average the shift velocity of thei th
droplets over various configurations of its next nearest ne
bors. Thus we finally get

dXW i

dt
52(

j Þ i

K j ,i

kikj
S 1

Ri
2

1

Rj
D XW i , j

uXi , j u2
. ~A9!

Although the approximation leading to this formula is n
based on a rigorous expansion, our simulations show th
works as well as the more rigorous equation~A1!. At the
same time it is much more economic because it requires
summation only over the nearest neighbors.

APPENDIX B: DEPLETION ZONES

The simplest possible improvement over the mean-fi
approximation can be obtained by including some of the c
relations between the positions of the droplets’ centers
this appendix we will take into account the simplest ma
festation of these correlations: the so calleddepletion zones.
These are the regions around each of the droplets, f
which all possible neighbors are excluded~by geometrical
steric constraints, the distance between the centers of
two droplets must exceed at least the sum of their radii!.

The exactequation for the diagonal elements of the m
trix f̂ is given by Eq.~41!, whereas for the off-diagona
elements it is Eq.~39!:

(
j Þ i ,k

1

lnRj /R0
ln~Xi , j /R0!f j ,k1f i ,k52gklnXi ,k /R0 .

~B1!

This has been replaced in our mean-field approximation
the following integral equation for the smooth functionf(x)
@see Eq.~45!#:

2
1

2p
z0

22E ln~Xi , j /R0!f~Xj ,k!d
2r j1f~Xi ,k!

52g lnXi ,k /R0 . ~B2!

Clearly, by using the integral of Eq.~B2!, we implicitly as-
sume that the distribution ofrW j , the positions of the center
of dropletsj , are independent of their distance from the o
at rW i . This homogeneity assumption may serve as a rea
able approximation as long asX̄, the mean distance betwee
neighbors, is much greater thand, the typical radius of the
depletion zones. However, when the density increases to
extent thatX̄;d, the inhomogeneity of the distribution o
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the j droplets around the fixed dropletsi andk can no longer
be ignored. One should emphasize that other effects, suc
correlations between different charges and between the d
lets’ sizes, may also be of importance and can also poss
affect the elements of the inverse matrix we are calculati
Nevertheless, here we take into account only the correlat
that ensure that the areas of two neighbors do not overlap
our actual numerical calculations even this is done only
proximately, by introducing auniform sized depletion zone
neglecting its fluctuations as well as dependence on the d
lets’ radii.

Correlation between the positions of the droplets can
incorporated in our approximate treatment by replacing
sum in Eq.~B1! by the integral operator

Ŝintf52
1

2p
z0

22E ln~Xi , j /R0!P~rW i ,rW j ,rWk!f~Xj ,k!d
2r j ,

~B3!

whereP is the probability of finding a droplet centered at th
point rW5rW j , given that there are droplets atrW5rW i and rW

5rWk . We approximate this probability~three-point correla-
tion function! by representing it as the product of pai
correlation functions

P~rW i ,rW j ,rWk!5g~Xi , j !g~Xj ,k!, ~B4!

where g(Xi , j ) is the probability of finding a dropletj at
distanceXi , j from the center of dropleti ; this function is
normalized such thatg(r )→1 at r→`. Within this approxi-
mation Eq.~B1! is replaced by

Ŝintf1f~Xi ,k!52S 11
fk,k

ln~Rk /R0! D lnXi ,k /R0 ~B5!

where now we have

Ŝintf52
1

2p
z0

22E ln~Xi , j /R0!g~Xi , j !g~Xj ,k!f~Xj ,k!d
2r j .

~B6!

In order to solve Eq.~B5! we first try to bring it as close to
the form of Eq.~B2! as we can and then use the same meth
of solution as was used there. To this end we first rewrite
expression forŜint as

Ŝintf52
1

2p
z0

22E ln~Xi , j /R0!g~Xi , j !f~Xj ,k!d
2r j

1
1

2p
z0

22E ln~Xi , j /R0!g~Xi , j !

3@12g~Xj ,k!#f~Xj ,k!d
2r j . ~B7!

The pair-correlation functiong(X) vanishes for short dis-
tancesX,d andg'1 for largeX. Therefore, we get nonva
nishing contributions to the second term in Eq.~B7! only
when Xj ,k,d. For Xi ,k@d, we have in this regiong(Xi , j )
'1 and ln(Xi,j /R0)'ln(Xi,k /R0), so that



r

rm

b
i

on

es

r
he

1908 57BORIS LEVITAN AND EYTAN DOMANY
Ŝintf'2
1

2p
z0

22E ln~Xi , j /R0!g~Xi , j !f~Xj ,k!d
2r j

2
1

2p
z0

22ln~Xi ,k /R0!E @12g~Xj ,k!#f~Xj ,k!d
2r j .

~B8!

The last formal step we take is to express the first integ
here as the sum of two terms, using2g5@12g#21, which
leads to our final expression forŜintf:

Ŝintf52
1

2p
z0

22E ln~Xi , j /R0!f~Xj ,k!d
2r j

1
1

2p
z0

22E ln~Xi , j /R0!@12g~Xi , j !#f~Xj ,k!d
2r j

2
1

2p
z0

22ln~Xi ,k /R0!E @12g~Xj ,k!#f~Xj ,k!d
2r j .

~B9!

Our basic equation~B5! takes now the form

2
1

2p
z0

22E ln~Xi , j /R0!f~Xj ,k!d
2r j1f~Xi ,k!

1
1

2p
z0

22E F~Xi , j !f~Xj ,k!d
2r j52gkln~Xi ,k /R0!,

~B10!

where

gk511
fk,k

ln~R0 /Rk!
1

1

2p
z0

22E @12g~Xj ,k!#f~Xj ,k!d
2r j

~B11!

and

F~X!5 ln~X/R0!@12g~X!#. ~B12!

Note that Eq.~B10! is very close in form to Eq.~B2!; the
only significant difference is the appearance of a new te
the integral over the functionF, which contains explicitly the
correlation functiong. Clearly, wheng(X)[1 we recover
Eq. ~B2!. As was the case there, the solution of Eq.~B10! is
symmetric if and only ifgk does not depend onk, gk'g,
which is achieved by imposingfk,k50. This leads again to
a condition that determines the value of the parameterR0
@see Eq.~B21! below#. Although nowgÞ1 @see Eq.~B11!#,
its value is unimportant for the simulations since it can
absorbed in the definition of the time scale in the dynam
equation. Hence, below we will setg51.

We solve Eq.~B10! by first applying the¹ i
2 operator to

the equation, which yields
al

,

e
c

2z0
22f~Xi ,k!1¹ i

2f~Xi ,k!

1
1

2p
z0

22¹ i
2E F~Xi , j !f~Xj ,k!d

2r j522pgd~Xi ,k!.

~B13!

Denote the Fourier transform ofF(X) by

F̃~q!5
1

2pE d2r lnS r

R0
D @12g~r !#eiqW •rW

5E
0

`

r dr lnS r

R0
D @12g~r !#J0~qr !. ~B14!

Note that the integral converges, sinceg(r )→0 fast for large
r . Upon Fourier transforming Eq.~B13! becomes

2z0
22f̃~q!2q2f̃~q!2z0

22q2F̃~q!f̃~q!522pg ,
~B15!

yielding the solution forf̃(q) ~from now on we setg51)

f̃~q!5
2p

q2

1

11z0
22@ F̃~q!1q22#

. ~B16!

Once f̃(q) has been evaluated, the functionf(X) is ob-
tained by the inverse Fourier transform. From this point
we work with the specific~step-function! form of g(X):

g~X!5H 0, X,d

1, X.d.
~B17!

For this form ofg the integral in Eq.~B14! can be calculated
analytically, integrating by parts and using the identiti
@xJ1(x)#85xJ0(x) and @J0(x)#85J1(x) to get

F̃~q!5q22$2q dJ1~qd!ln~R0 /d!1@12J0~qd!#%.
~B18!

We now substitute this into~B16! and perform the angula
integration in the inverse Fourier transform to arrive at t
following expression forf(r ):
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f~r !5E
0

` J0~qr !

q21z0
222@z0

22ln~R0 /d!#q dJ1~qd!1z0
22@12J0~qd!#

q dq. ~B19!
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We cannot perform this integral analytically, but it is simp
to evaluate by numerical integration. Once this has b
done, the parameterR0 can be found by imposing the con
dition fk,k50, which takes the form@analogous to Eq.~51!#

fk,k5
1

2p
z0

22E lnS r

R0
Dg~r !f~r !d2r 50, ~B20!

which becomes the following equation forR0:

lnR05

E
d

`

ln~r !f~r !r dr

E
d

`

f~r !r dr

. ~B21!

OnceR0 has been determined, we can evaluate the param
z0, using its definition

z0
2252pnK 1

ln~R0 /Ri !
L . ~B22!

For a given droplet configuration one can now proceed
find f(r ) by taking the following steps. First, determine th
radius of the depletion zoned from the measured correlatio
function of the droplets~such as Fig. 3!. Then solve Eqs.
~B19!, ~B21!, and ~B22!. This can be done iteratively b
initializing the procedure using the results of the correlatio
free theory forf, z0, and R0. The next iterate off(r ) is
evaluated using Eq.~B19!. This newf(r ) is then used in Eq.
~B21! to yield the new value ofR0. This in turn is used in
Eq. ~B22!, together with the distribution of the droplets’ ra
dii, to yield the new iterate ofz0. The procedure is then
repeated until convergence is reached. In practice we us
few simplifying steps, which made computation faster wi
out significantly altering the result. The first simplificatio
consists of setting

d5k^R& ~B23!

for an entire run, instead of determining it from the corre
tion function at each time step. We found that values in
range 2.0<k<2.8 fit the correlation function quite well. Th
numerical results were obtained using the fixed valuek
52.15. A second time-saving simplification is to use t
approximation

z0
2252pn

1

ln~R0 /^R&!
~B24!

to calculate z0, instead of evaluating the averag
^1/ln(R0 /Ri)& over the measured distribution of droplet size
Recall also that the density of dropletsn is related to their
relative area fractionw by n5w/p^R2&. In the spirit of the
previous approximation we replace^R2&'^R&2, so that Eq.
~B24! becomes
n

ter

o

-

a
-

-
e

.

z0
225

2w

^R&2

1

ln~R0 /^R&!
. ~B25!

Using Eqs.~B23! and~B25! simplifies our numerical schem
significantly. To demonstrate the effect of including th
depletion zones in the calculation we present in Table I
results of calculations performed in the scaling regime
four different values ofw. The various quantities presente
were obtained as follows:R0 and z0 are ~simultaneous! so-
lutions of Eqs.~B19!, ~B21! ~with d52.15̂ R& in both!, and
~B25!. z0

m f is the value of the screening length as obtained
settingd50. The screening lengthzscr is the first moment of
the functionf(r ),

zscr
2 5E

d

`

f~r !r dr , ~B26!

calculated by numerical integration of Eq.~B19!.
As we see, for very small fractions the screening length

less thanz0
m f . This is surprising since we expected inclusio

of the depletion zones to increase the screening regions.
the larger fractions, however, we indeed see that the effec
including the depletion zone changes sign: The renormali
screening length becomes greater than the mean-field re
as was expected.

Another important observation we should make is that
w increases,z decreases and becomes comparable to the
erage radius~in units of which it is given in Table I!. At such
w, z obviously cannot be interpreted as a ‘‘screening lengt
becausez'^R& means that there are no droplets in t
‘‘screening zone.’’

Another question that we studied in detail concerns
extent to which introducing the depletion zone affects
function f(r ). Clearly, when we are not in the limit of ver
small w it is no longer given by the MacDonald function
Table II containsf(r ), as obtained atw50.13 by the proce-
dure outlined above: settingd52.15̂ R& and simultaneously
solving Eqs.~B19!, ~B21!, and~B25!. Comparingf(r ) with
the simple mean-field resultK0(r /z0

m f) reveals that the
renormalization due to inclusion of the depletion zones le
to a significant change of the matrix elementsf(r ). On the
other hand, comparingf(r ) with the functionK0(r /z0) we
see thatf(r ) does not differ much from MacDonald’s func
tion, provided therenormalizedz0 is used. Therefore, in
principle this function can be used in calculations as a fa
good approximation forf(r ). The numerical results pre
sented in Sec. IV were obtained usingz052.73, according to
Table I.

APPENDIX C: DERIVATION OF THE CONDITION
FOR R0

The condition~45! on R0:

1

2p
z0

22E ln~Xk, j /R0!K0~Xj ,k /z0!d2r j50, ~C1!
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can be simplified by representing

ln~Xi , j /R0!5 ln~Xi , j /z0!1 ln~z0 /R0!

so that Eq.~C1! becomes

B1Aln~z0 /R0!50 , ~C2!

where the constantA has the value

A5
1

2p
z0

22E K0~Xj ,k /z0!d2r j51 ~C3!

because of the normalization ofK0(x), while the other con-
stantB is given by

B5
1

2p
z0

22E ln~Xk, j /z0!K0~Xj ,k /z0!d2r j . ~C4!

In order to evaluateB we note that the solution of Eq.~45! is
given, for any value ofR0, by Eq. ~48!. Therefore, we can
substitutef(Xi ,k) from Eq. ~48! in Eq. ~45! and choose for
R0 the special valueR05z0 to get the identity

2
1

2p
z0

22E ln~ urW2rW8u/z0!K0~r 8/z0!d2r 81K0~r /z0!

52 ln~r /z0!. ~C5!

It is trivial to see that in the limitrW→0 the integral on the
left-hand side of this identity becomes precisely equal toB

@as given by Eq.~C4!#. For rW→0 we can use the small-r
limit ~49! of K0 so that for very smallr our identity becomes

TABLE II. Interaction functionf(r ) for the case of depletion
zones calculated at the area fractionw50.13. It is compared with
the MacDonald function with the renormalized screening param
z0 ~third column! and with the unrenormalized, mean-field scree
ing lengthz0

m f ~fourth column!. Note that the distancer is measured
in units of the mean distance between neighboring dropletx
51/An.

r /x f(r ) K0(r /z0) K0(r /zm f)

0.722 2.884 2.617 1.205
0.884 1.914 1.773 0.711
1.045 1.320 1.218 0.425
1.206 0.901 0.845 0.257
1.420 0.546 0.525 0.133
1.689 0.297 0.294 0.059
1.904 0.185 0.186 0.031
2.012 0.147 0.148 0.022
2.118 0.118 0.118 0.016
2.333 0.075 0.076 0.008
2.548 0.046 0.048 0.004
2.763 0.027 0.031 0.002
2.97 0.016 0.020 0.001
3.031 0.014 0.018 0.001
3.353 0.0087 0.0095 0.00047
2B2 lnS r

2z0
D2C52 lnS r

z0
D ,

so that we find

B5 ln22C ~C6!

(C is Euler’s constant!. Using the values ofA andB in Eq.
~C2! it becomes

ln22C1 ln~z0 /R0!50 , ~C7!

providing a new connection betweenR0 andz0. This is to be
used together with Eq.~46! to solve for bothR0 and z0.
Since Eq.~46! contains ln(R0 /^R&), it is convenient to add
and subtract ln̂R& from Eq. ~C7! and to rewrite it as

ln~R0 /^R&!5 ln~2z0 /^R&!2C. ~C8!

If we have ^R&!z0 the right-hand side of Eq.~C8! is
'K0(^R&/z0), so that Eq. ~C7! becomes ln(R0 /^R&)
'K0(^R&/z0). Finally, we can write, with the same accurac

K 1

ln~R0 /R!L ' K 1

K0~R/z0!L . ~C9!

APPENDIX D: THE SMALL PARAMETER
OF THE APPROXIMATION

In the mean-field limit, whenR0;z0@Ri the quantity
1/ln(R0 /Ri) does not vary much and one can take it out of t
sum and replace it by its mean value. Next we see that th
is a scalez0 such thatf does not change much over di
tances much less thanz0. Let us divide the plane into boxe
b of size z03z0. Then the sum that still remains can b
rewritten as

(
j Þ i ,k

ln~Xi , j /R0!f j ,k5(
b

(
j Pb ~ j Þ i ,k!

ln~Xi , j /R0!f j ,k .

~D1!

Actually, only the few boxes located nearrWk have a signifi-
cant contribution to the sum; the contribution of all the ot
ers is exponentially small due to the screening effect.

The expression being summed does not change much
side each box and therefore, if the mean number of the d
lets in the boxNz is large enough, the internal sum withi
each box can be replaced by the integral. In this case,
cording to the theorem of large numbers,

U(
j Pb

ln~Xi , j /R0!f j ,k2nE ln~Xi , j /R0!f~Xj ,k!d
2r jU; 1

ANz

.

~D2!

This gives rise to the following condition for the validity o
our approximation:

Nz5nz0
2@1. ~D3!

er
-
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However, Eq.~46! implies thatnz0
2;(2p)21ln(R0 /^R&) and,

as we have shown,z0'R0, so that

nz0
2; ln~z0 /^R&!. ~D4!

On the other hand, multiplying Eq.~46! by ^R&2 and using
-
s

the definition of the area fractionw5pn^R2&;pn^R&2

yields ln(z0 /R0);ln(w21). This, together with Eqs.~D3! and
~D4!, means that

ln~w21!@2p.
B
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